POLYFUNKČNÍ DOMY
CENTRUM LUŽINY
PRAHA 13

DOKUMENTACE
VLIVŮ NA ŽIVOTNÍ PROSTŘEDÍ
DLE ZÁKONA Č. 100/2001 Sb., VE ZNĚNÍ POZDĚJŠÍCH PŘEDPISŮ
(DLE PŘÍLOHY ČÍSLO 4 K ZÁKONU Č. 100/2001 Sb.)

Prosinec 2014
Oznamovatel:

YIT Stavo s.r.o.
Milady Horákové 109/116,
160 00 Praha 6

IČ: 26420562, DIČ: CZ 26420562

Držitel autorizace a odpovědný řešitel:

Ing. Bohumil Sulek, CSc.
Na Pláni 9/2863
150 00 Praha 5

e-mail: bob.sulek@seznam.cz
telefon: 602 353 194

Zpracovatelé specializovaných studií:

Prosinec 2014
Číslo úkolu: 2014-S-06
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

- Ing. Petr Hrubý, Ing. Lucie Popílková: Polyfunkční domy – Centrum Lužiny - Protokol o zkoušce č. 1206055VP (protokol z měření hluku), EKOLA group, Praha, 2012
- Dopravněinženýrské podklady pro záměr „Polyfunkční domy – Centrum Lužiny“, ve formátu *.doc, zpracovatel: Technická správa komunikací hl. m. Prahy, červen 2013;
- Dopravněinženýrské podklady pro záměr „Polyfunkční domy – Centrum Lužiny“, varianta II, Technická správa komunikací hl. m. Prahy; Praha, 2014;
- Ing. Bc. Petr Kumpošt, PhD.: Dopravní průzkumy v městské části Praha – Stodůlky; ČVUT fakulta dopravní, Ústav dopravních systémů; Praha, 2012;
- MUDr. Bohumil Havel, držitel osvědčení SZÚ Praha o autorizaci k hodnocení zdravotních rizik č.j. Spr. 2706/2002: Polyfunkční domy – Centrum Lužiny, Praha 13, Hodnocení vlivů na veřejné zdraví - zdravotní rizika hluku a imisí (varianta 1 a varianta 2); Svitavy, 2014
- Prof. Ing. arch. Ladislav Lábus, HON, FAIA: Polyfunkční domy Centrum Lužiny – Praha 13, Přístavba obchodního centra Lužiny, Stanovisko k záměru dotvořit komplex centra Lužín dostavbou polyfunkčních domů podél fasád OC Lužiny.
- Doc. Ing. Arch. Ivo Oberstein, CSc.: Obchodní centrum LUŽINY – Rozbor současného stavu centra a úvaha o možnostech jeho přestavby a revitalizace i z hlediska širších vztahů, Praha, říjen 2010
- Ing. arch. Martin Hlaváček: Historie vývoje projektu Dostavba obchodního centra Lužiny, Hlaváček a Pertner s.r.o., Praha, 2014
- RNDr. Jan Pretel, CSc.: Znalecké posudky „Vliv projektované výstavby objektů Polyfunkční domy – Centrum Lužiny na přirozené provětrávání území“, Praha, 2014
OBSAH

<table>
<thead>
<tr>
<th>Část</th>
<th>Název</th>
<th>Strana</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Úvod</td>
<td>10</td>
</tr>
<tr>
<td>2.</td>
<td>Dokumentace</td>
<td>12</td>
</tr>
<tr>
<td>Část A: Údaje o oznámovatele</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>A.I. Obchodní firma</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>A.II. Identifikační číslo (IČ)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>A.III. Sídlo</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>A.IV. Jméno, příjmení, bydliště a telefon oprávněného zástupce oznámovatele</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Část B: Údaje o záměru</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>B.I. Základní údaje</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>B.I.1. Název záměru a jeho zařazení podle přílohy číslo 1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>B.I.2. Kapacita (rozsah) záměru</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>B.I.3. Umístění záměru (kraj, obec, katastrální území)</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>B.I.4. Charakter záměru a možnost kumulace s jinými záměry</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>B.I.5. Zdůvodnění potřeby záměru a jeho umístění, včetně přehledu zvažovaných variant a hlavních důvodů pro jejich výběr, respektive odmítnutí</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>B.I.6. Popis technického a technologického řešení záměru</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>B.I.7. Předpokládaný termín zahájení realizace záměru a jeho dokončení</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B.I.8. Výčet dotčených územně samosprávných celků</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B.I.9. Výčet navazujících rozhodnutí podle § 10 odstavec 4 a správních úřadů, které budou tato rozhodnutí vydávat</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B.I.10. Doplňující údaje</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>B.II. Údaje o vstupech</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>B.II.1. Půda</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>B.II.2. Voda</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>B.II.3. Ostatní surovinové a energetické zdroje</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>B.II.4. Nároky na dopravní a jinou infrastrukturu</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>B.II.5. Chráněná území a ochranná pásmá</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>B.III. Údaje o výstupech</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>B.III.1. Osvětlu</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>B.III.2. Odpadní vody</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>B.III.3. Dešťové vody za provozu</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>B.III.4. Odpady</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>B.III.5. Ostatní</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>B.III.6. Doplňující údaje</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Část C – Údaje o stavu životního prostředí v dotčeném území</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>C.1. Výčet nezávažnějších environmentálních charakteristik dotčeného území</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>C.1.1. Územní systémy ekologické stability krajiny</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>C.1.2. Zvláštní chráněná území</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>C.1.3. Přírodní parky</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>C.1.4. Významné krajinářské prvky</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>C.1.5. Území historického, kulturního nebo archeologického významu</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>C.1.6. Památné stromy</td>
<td>73</td>
<td></td>
</tr>
</tbody>
</table>
C.1.7. Území hustě zalidněná ... 73
C.1.8. Území zatížovaná nad míru únosného zatížení 73
C.1.9. Staré ekologické zátěže ... 74
C.1.10. Extrémní poměry v dotčeném území .. 74
C.2. Charakteristika současného stavu životního prostředí v dotčeném území ... 74
C.2.1. Ovzduší a klima ... 74
C.2.2. Voda .. 86
C.2.3. Půda .. 86
C.2.4. Horninové prostředí a přírodní zdroje 88
C.2.5. Hluk - počáteční akustická situace 89
C.2.6. Fauna a flóra .. 94
C.2.7. Ekosystémy .. 96
C.2.8. Krajiná .. 96
C.2.9. Obyvatelstvo ... 97
C.2.10. Hmotný majetek a kulturní památky 97
C.2.12. Doplňující údaje ... 98
C.3. Celkové zhodnocení kvality životního prostředí v dotčeném území z hlediska jeho únosného zatížení ... 101
C.3.1. Celkové zhodnocení kvality životního prostředí v dotčeném území ... 101
C.3.2. Priority trvale udržitelného využívání území 103
ČÁST D – KOMPLEXNÍ CHARAKTERISTIKA A HODNOCENÍ VLIJŮ ZÁMĚRU NA VEŘEJNÉ ZDRAVÍ A ŽIVOTNÍ PROSTŘEDÍ ... 106
D.I. Charakteristika předpokládaných vlivů záměru na obyvatelstvo a životní prostředí a hodnocení jejich velikosti a významnosti ... 106
D.I.1. Vlivy na obyvatelstvo, včetně sociálně ekonomických vlivů ... 106
D.I.2. Vlivy na ovzduší a klima ... 114
D.I.3. Vlivy na hlukovou situaci a eventuální další fyzikální a biologické charakteristiky ... 132
D.I.4. Vlivy na povrchové a podzemní vody ... 164
D.I.5. Vlivy na půdu ... 165
D.I.6. Vlivy na horninové prostředí a přírodní zdroje 166
D.I.7. Vlivy na faunu, flóru a ekosystémy ... 166
D.I.8. Vlivy na krajinu ... 168
D.I.9. Vlivy na hmotný majetek a kulturní památky 171
D.I.10. Doplňující údaje ... 171
D.II. Komplexní charakteristika vlivů záměru na životní prostředí z hlediska jejich velikosti a významnosti a možnosti přeshraničních vlivů ... 172
D.II.1. Komplexní charakteristika vlivů záměru na životní prostředí z hlediska jejich velikosti a významnosti ... 172
D.II.2. Přeshraniční vlivy ... 174
D.III. Charakteristika environmentálních rizik při možných haváriích a nestandardních stavech ... 175
D.III.1. Období výstavby ... 175
D.III.2. Období provozu ... 175
D.IV. Charakteristika opatření k prevenci, vyloučení, snížení, popřípadě kompenzaci nepříznivých vlivů na životní prostředí

D.IV.1. Územně plánovací opatření
D.IV.2. Kompenzační opatření
D.IV.3. Opatření pro fázi přípravy záměru
D.IV.2. Opatření pro fázi realizace záměru
D.IV.3. Opatření pro fázi provozu záměru:
D.4.4. Opatření pro fázi likvidace stavby

D.V. Charakteristika použitých metod prognózování a výchozích předpokladů při hodnocení vlivů

D.VI. Charakteristika nedostatků ve znalostech a neurčitostí, které se vyskytovaly při zpracování dokumentace

ČÁST E - POROVNÁNÍ VARIANT ŘEŠENÍ ZÁMĚRU (POKUD BYLY PŘEDLOŽENY)
ČÁST F - ZÁVĚR
ČÁST G - VŠEOBECNÉ SROZUMITELNÉ SHRNUÍ NETECHNICKÉHO CHARAKTERU
ČÁST H - PŘÍLOHY

3. SEZNAM ZPRACOVATELŮ DOKUMENTACE
4. SEZNAM POUŽITÝCH PODKLADŮ
Přílohy:

Část 1

Příloha č. 1 Vyjádření příslušného stavebního úřadu k záměru z hlediska územně plánovací dokumentace
Závazné stanovisko Magistrátu hlavního města Prahy, odboru územního plánu, k záměru studie proveditelnosti „Polyfunkční domy – Centrum Lužiny“
Stanovisko orgánu ochrany přírody z hlediska možných vlivů na soustavu NATURA 2000

Příloha č. 2 Situace navrhované zástavby
Situace širších vztahů
Zákres řešeného území do snímku územního plánu
Schéma vjezdů a parkovišť
Celková koordinační situace
Funkční využití plochy SV

Příloha č. 3 Vizualizace a pohledy

Příloha č. 4 Rozptylové studie

Část 2

Příloha č. 5 Hlukové studie
Protokol o měření hluku

Příloha č. 6 Hodnocení vlivů na veřejné zdraví

Příloha č. 7 Studie oslunění a denního osvětlení

Příloha č. 8 Dopravně inženýrské podklady
Dopravní průzkum

Část 3

Příloha č. 9 Studie vlivu na krajinný ráz

Příloha č. 10 Fotodokumentace stávajícího stavu

Příloha č. 11 Dendrologický průzkum

Příloha č. 12 Studie provětrávání území

Příloha č. 13 Doklady odborné způsobilosti

Příloha č. 14 Stanovisko k záměru dotvořit komplex centra Lužin dostavbou polyfunkčních domů podél fasád OC Lužiny

Příloha č. 15 Historie vývoje projektu Dostavba obchodního centra Lužiny

Příloha č. 16 Obchodní centrum LUŽINY – Rozbor současného stavu centra a úvaha o možnostech jeho přestavby a revitalizace i z hlediska širších vztahů

Příloha č. 17 Vypořádání připomínek k oznámení záměru
Seznam zkratek:

- ATEM: Ateliér ekologických modelů
- BPEJ: Bonitovaná půdně-ekologická jednotka
- BČOV: Biologická čistírna odpadních vod
- BSK: Biologická spotřeba kyslíku
- CZT: Centrální zdroj tepla
- ČOV: Čistírna odpadních vod
- dB: Decibel
- ČiŽP OI: Česká inspekce životního prostředí, oblastní inspektorát
- DÚR: Dokumentace pro vydání územního rozhodnutí
- EO: Ekvivalentní obyvatel
- EVL: Evropsky významná lokalita
- EVVO: Environmentální vzdělávání, výchova a osvěta
- CHKO: Chráněná krajinná oblast
- CHLÚ: Chráněné ložiskové území
- CHSK: Chemická spotřeba kyslíku
- ISKO: Informační systém kvality ovzduší
- k.ú.: Katastrální území
- KES: Kostra ekologické stability
- KPP: Koeficient podlažních ploch
- KZ: Koeficient zeleně
- KZP: Koeficient zastavěných ploch
- L_Aeq: Ekvivalentní hladina akustického tlaku (hluku)
- MHD: Městská hromadná doprava
- MO: Městský okruh
- NATURA 2000: Soustava lokalit chránících nejvíce ohrožené druhy rostlin, živočichů a přírodní stanoviště na území EU (ptačí oblasti a evropsky významné lokality)
- NN: Nízké napětí / nízkonapěťový
- NO₂: Oxid dusičitý
- NP: Nadzemní podlaží
- NPH: Nejvýše přípustná hodnota
- NPR: Národní přírodní rezervace
- OSM: Ochranný systém metra
- OTP: Obecné technické požadavky
- PAS: Počáteční akustická situace
- PHM: Pohonné hmoty
- PID: Pražská integrovaná doprava
- PM₁₀: Suspendské částice frakce PM₁₀ (prašný aerosol)
- PM₂,₅: Suspendské částice frakce PM₂,₅ (prašný aerosol)
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Číslo úkolu: 2014-S-06

PO Pražský okruh
PP podzemní podlaží
PR přírodní rezervace
PRE Pražská energetika a.s.
PREdi PRE distribuce a.s.
PS parkovací stání
PSP Pražské stavební předpisy
PUPFL pozemky určené k plnění funkce lesa
PVS Pražská vodohospodářská společnost
Q průtok
RB referenční bod
ŘSD Ředitelství silnic a dálnic
SAS Státní archeologický seznam
STL středotlaký, středotlak (plynu)
SV plocha s funkčním využitím SV – všeobecně smíšené (dle ÚPN hl. m. Prahy)

TSK Technická správa komunikací hlavního města Prahy
TUV teplá užitková voda
TZL tuhé znečišťující látky
ÚDI Ústav dopravního inženýrství hl. m. Prahy
ÚPN (ÚP) územní plán
ÚPD územně plánovací dokumentace
ÚR územní rozhodnutí
ÚSES územní systém ekologické stability
ÚPP Útvar památkové péče
VaK vodovody a kanalizace
VKP významný krajinný prvek
VN vysoké napětí / vysokonapěťový
VOC těkavé organické látky
VRÚ velké rozvojové území
VZT vzduchotechnika, vzduchotechnický
ZCHÚ zvláště chráněné území
ZOV zásady organizace výstavby
ZPF zemědělský půdní fond
1. ÚVOD

Předložená dokumentace o záměru „Polyfunkční domy – Centrum Lužiny“ je zpracována na základě § 8 zákona číslo 100/2001 Sb., o posuzování vlivů na životní prostředí a o změně některých souvisejících zákonů, ve znění pozdějších předpisů (zákon o posuzování vlivů na životní prostředí, případně pouze zákon). Posuzovaný záměr je hodnocen na základě bodu 10.6 přílohy číslo 1 zákona, kategorie II - Skladové nebo obchodní komplexy včetně nákupních středisek o celkové výměře nad 3 000 m² zastavěné plochy; parkoviště nebo garáže s kapacitou nad 100 parkovacích stání v součtu pro celou stavbu.

Uvedený záměr byl podroben ve smyslu § 4, odstavec 1, písmeno c) zjišťovacímu řízení podle § 7 zákona. Dne 18.11.2013 vydal příslušný úřad, Magistrát hlavního města Prahy, závěr zjišťovacího řízení, ve kterém příslušný úřad dospěl na základě provedeného zjišťovacího řízení k závěru, že záměr „Polyfunkční domy – Centrum Lužiny“ bude posuzován podle zákona číslo 100/2001 Sb., ve znění pozdějších předpisů. To znamená, mimi jiné, povinnost zpracovat ve smyslu § 8 zákona dokumentaci vlivů záměru na životní prostředí (dokumentaci), a to dle přílohy číslo 4 k zákonu č. 100/2001 Sb.

Dokumentace byla zpracována na základě smlouvy mezi zpracovatelem dokumentace a společností YIT Stavo s.r.o., se sídlem Milady Horákové 109/116, 160 00 Praha 6. Základním podkladem pro hodnocení stavby byly projektové materiály a informace předané zpracovatelům dokumentace objednatelem a projektanty stavby, konzultace poskytnuté Magistrátem hl. m. Prahy, specializované studie a posudky, literární a mapové podklady, terénní šetření, závěr zjišťovacího řízení a vyjádření doručená k oznámení. Hlavní použité materiály jsou uvedeny v závěru této dokumentace v kapitole 4. Seznam použitých podkladů.

S ohledem na závěr zjišťovacího řízení a vyjádření doručená k oznámení záměru, týkající se velikosti a architektury stavby, bylo zpracováno variantní řešení stavby, které je v dokumentaci označováno jako varianta 2 záměru. V této variantě byl záměr objemově zmenšen a bylo přepracováno architektonické řešení objektů.

Východní objekt záměru (objekt Beta) byl ve variantě 2 snížen oproti variantě 1 záměru o jedno podlaží. Ostatní charakteristiky objektu Beta zůstaly ve variantě 2 záměru v zásadě zachovány. Západní objekt (objekt Alfa) byl ve variantě 2 záměru objemově přepracován a nejsou v něm, na rozdíl od varianty 1, uvažovány administrativní plochy. Objekt Alfa je tedy ve variantě 2 záměru navržen jako čistě bytový.

Vzhledem k charakteru záměru a charakteru území pro jeho výstavbu je v dokumentaci věnována pozornost zejména potenciálnímu ovlivnění kvality ovzduší v důsledku automobilové dopravy související s dopravní obsluhou záměru a zatížení hlukem z automobilové dopravy vyvolané provozem záměru a ze stacionárních zdrojů hluku záměru. Specializovanými studiemi, které jsou uvedeny v přílohové části dokumentace, byly posouzeny také vlivy obou variant záměru na veřejné zdraví, provětrávání území a krajinný rám.

Soulad uvedeného záměru s povinnostmi vyplývajícími ze zákonných ustanovení byl konfrontován se současně platnou legislativou. Existují-li další závažné skutečnosti, které by na posuzování záměru mohly mít zásadní vliv, nebyly zpracovateli dokumentace v době jejího zpracování známy.
2. DOKUMENTACE

ČÁST A: ÚDAJE O OZNAMOVATELI

A.I. Obchodní firma
YIT Stavo s.r.o.

A.II. Identifikační číslo (IČ)
26420562

A.III. Sídlo
Milady Horákové 109/116
160 00 Praha 6

A.IV. Jméno, příjmení, bydliště a telefon oprávněného zástupce oznamovatele
Jana Smolíková
vedoucí pracovník inženýringu
YIT Stavo s.r.o.
Milady Horákové 109/116
160 00 Praha 6
telefon: +420 774 480 476
e-mail: jana.smolikova@yit.cz

Investor:
LUŽINY ALFA s.r.o.
Archeologická 2256/1, 155 00 Praha 5 - Stodůlky
IČ: 28542932 (majitel pozemku p.č. 2131/733)

LUŽINY BETA s.r.o.
Archeologická 2256/1, 155 00 Praha 5 - Stodůlky
IČ: 28543203 (majitel pozemku p.č. 2131/734)

Projektant:
SEA Architekt spol. s r.o.
V Jezírku 520, 253 46 Průhonice
IČ: 14803089
tel: 241 483 438, 604234472
e-mail: sea@iol.cz

Pro potřebu rozhodování investora záměru o podobě dostavby obchodního centra (OC) Lužiny polyfunkčními domy bylo zpracováno několik architektonických studií, včetně dvou návrhů od autorů OC Lužiny – architektky A. Šrámkové a architekta L. Lábuse, které se svým objemovým řešením přístavby velmi podobají posuzované verzi záměru.

Koordinace projektu: YIT Stavo s.r.o.
Milady Horákové 109/116
160 00 Praha 6
ČÁST B. ÚDAJE O ZÁMĚRU

B.I. Základní údaje

B.I.1. Název záměru a jeho zařazení podle přílohy číslo 1

Název záměru
Polyfunkční domy – Centrum Lužiny

Zařazení záměru podle přílohy číslo 1

Záměr je zařazen dle přílohy č. 1 zákona č. 100/2001 Sb., o posuzování vlivů na životní prostředí a o změně některých zákonů (zákon o posuzování vlivů na životní prostředí), ve znění pozdějších předpisů, do kategorie II, bodu 10.6 „Skladové nebo obchodní komplexy včetně nákupních středisek o celkové výměře nad 3000 m² zastavěné plochy; parkoviště nebo garáže s kapacitou nad 100 parkovacích stání v součtu pro celou stavbu“.

Uvedený záměr byl ve smyslu §4, odstavec 1, písmeno b) zákona o posuzování vlivů na životní prostředí předmětem zjišťovacího řízení podle §7 téhož zákona. Na uvedený záměr zpracoval Ing. Bohumil Sulek, CSc. ve smyslu §6 zákona v srpnu 2013 oznámení dle přílohy číslo 3 zákona. Závěr zjišťovacího řízení vydaný dne 18.11.2013 příslušným úřadem, Magistrátem hl. m. Prahy, odborem životního prostředí, stanovil, že předkládaný záměr bude, ve smyslu §4, odstavec 1, písmeno c) zákona, předmětem posuzování vlivů záměru na životní prostředí podle zákona o posuzování vlivů na životní prostředí.

B.I.2. Kapacita (rozsah) záměru

Tabulka B1 Hlavní parametry objektů záměru (přibližné parametry)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Západní objekt</th>
<th>Východní objekt</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Var. 1</td>
<td>Var. 2</td>
<td>Var. 1</td>
</tr>
<tr>
<td>Zastavěná plocha novostaveb</td>
<td>2 023 m²</td>
<td>2 023 m²</td>
<td>880 m²</td>
</tr>
<tr>
<td>Celkové podlažní plochy bytů</td>
<td>11 720 m²</td>
<td>13 233 m²</td>
<td>8 180 m²</td>
</tr>
<tr>
<td>Počet bytů (z toho 90% do 100m²)</td>
<td>169</td>
<td>168</td>
<td>134</td>
</tr>
</tbody>
</table>

Prosinec 2014
Číslo úkolu: 2014-S-06
B.I.3. Umístění záměru (kraj, obec, katastrální území)

- **kraj:** hlavní město Praha
- **obec:** hlavní město Praha
- **městská část:** Praha 13
- **katastrální území:** Stodůlky (755541)
- **parcelní čísla pozemků:** 2131/733, 2131/734

Obrázek B1 Umístění záměru – situace širších vztahů

Zdroj: http://www.mapy.cz; EKOLA group, spol. s r.o.
Plánovaná stavba se nachází v centru sídliště Lužiny v těsné blízkosti stanice metra Lužiny. Výstavba polyfunkčních domů je navržena na zpevněných plochách zásobovacích dvorů stávajícího obchodního centra Lužiny, ke kterému budou objekty záměru přilehat ze západní a z východní strany. Umístění zájmového území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ je zřejmé z následujícího obrázku a z mapových podkladů uvedených v příloze číslo 2 dokumentace.

B.I.4. Charakter záměru a možnost kumulace s jinými záměry

Záměrem je výstavba polyfunkčních domů s převažující funkcí bydlení, která je v případě varianty 1 záměru doplněna o kanceláře. Vzhledem k charakteru záměru přichází v úvahu zejména:

- kumulace vlivů obslužné dopravy vyvolané provozem záměru a stacionárních zdrojů hluku se zdroji hluku v jeho okolí,
- kumulace vlivů obslužné dopravy vyvolané provozem záměru s jinými zdroji znečišťování ovzduší.

V případě zdrojů hluku nesouvisejících s provozem záměru se bude jednat zejména o hluk z automobilové dopravy na komunikacích v jeho okolí a na okolních parkovacích plochách. V případě zdrojů znečištění ovzduší nesouvisejících s provozem záměru se bude jednat zejména o a emise do ovzduší z automobilové dopravy na okolních komunikacích a parkovacích plochách, ale také o znečištění ovzduší ze vzdálenějších zdrojů na území města i mimo něj.

Provoz záměru nebude za běžného provozu znamenat významné zatížení pro okolní životní prostředí nebo zdraví obyvatel. Nicméně z lokálního hlediska bude provoz záměru znamenat, zejména vzhledem k provozu automobilů zajišťujících jeho dopravní obsluhu ve vymezeném prostoru, a vzhledem k provozu stacionárních zdrojů hluku záměru určitý (malý) příspěvek ke stávající imisní zátěži zájmového území v oblasti hluku a kvality ovzduší.

Vlivy záměru „Polyfunkční domy – Centrum Lužiny“ na imisní situaci v ovzduší a na hlukovou zátěž v zájmovém území pro realizaci záměru a v jeho okolí (včetně jeho příspěvků) jsou proto vyhodnoceny v příslušných kapitolách dokumentace na základě specializovaných studií, které jsou její nedílnou součástí (viz rozptylové a hlukové studie, které jsou přílohami dokumentace číslo 4 a 5).

B.I.5. Zdůvodnění potřeby záměru a jeho umístění, včetně přehledu zvažovaných variant a hlavních důvodů pro jejich výběr, respektive odmítnutí

Důvodem pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ je podnikatelský záměr investora vybudovat v zájmovém území dva moderní polyfunkční objekty s převažující funkcí bydlení splňující požadavky budoucích vlastníků, případně nájemců bytů, a v případě varianty 1 záměru splňující také požadavky nájemců nebytových prostor. Výchozí myšlenkou návrhu je snaha navrhnout a atraktivní současně bydlení v centru panelového sídliště.
K rozhodnutí využít předmětnou lokalitu pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ bylo přistoupeno na základě posouzení možností daných Územním plánem hl. m. Prahy, předběžného projednání záměru se zainteresovanými subjekty a také s ohledem na stávající zástavbu v zájmovém území a na uspořádání a charakter ploch v dané lokalitě.

Záměr bude realizován na pozemcích určených Územním plánem sídelního útvaru hlavního města Prahy k zástavbě. Zájmové území pro realizaci záměru se nenachází v hranicích žádného velkého rozvojového území (VRÚ), které bylo stanoveno vyhláškou č. 33/1999 Sb. HMP, a není dotčeno současnou stavební uzavřenou velkých rozvojových území.

Při rozhodování o způsobu využití zájmového území se vycházelo ze zhodnocení požadavků na stavební provedení a provozní uspořádání objektů, požadavků na architektonický vzhled staveb, možnosti respektování, případně úpravy inženýrských sítí, možnosti napojení na komunikační systém a řady dalších požadavků a parametrů.

Záměr dotvořit centrum Lužin odpovídá nejen závěrům autorů OC Lužiny A. Šrámkové a L. Lábuse (zhmotněným a podrobně zdůvodněným v jejich architektonických studiích na dostavbu centra – viz přílohy číslo 14 a 15), ale především odpovídá aktuálním obecným urbanistickým trendům v oblasti rozvoje území a měst, sdílených v dokumentech strategického a územního plánování i ve vyjádřeních a stanoviscích zejména odborů výstavby, územního rozvoje a IPR. Kladné vyjádření stavebního úřadu MČ Praha 13 a kladné stanovisko odboru územního plánu MHMP k dotčenému záměru jsou toho dokladem.

Záměr „Polyfunkční domy – Centrum Lužiny“ odpovídá současným snahám využívat stávající kapacity prostředí městské zástavby a krajinou související také s ochranou dosud nezastavěných území a orné půdy, zbytečně obětovaných rozlévání zástavby domů a hal do krajiny. Především však souvisí s aktuálními trendy kompozice měst, které je nejsme nuceni podobu a formu centra a lokalit podřizovat panelové technologii a modernistické sídlištění ideje resp. dogmatu, kde centrum města tvořila nejnižší forma zástavby – nízkopodlažní obchodní centra.

Naopak dnes se vracíme k tradiční kompozici měst, kde je centrální poloha území kromě jiného vyjádřena i hustotou a výškovou úrovní zástavby. Dalším zásadním prvkem snahy o živé moderní město o oživení veřejných prostranství je potřeba udržení tradičního multifunkčního využití centra území, opuštění modernistického principu zónování a separace funkcí na budování a plochy pro obchod a služby, která umrtvuje prostředí a život v centrálních partiích měst a lokalit a dělá z města sídliště.

Dle projektové dokumentace stavby a také podle informací poskytnutých investorem a projektantem stavby zahrnuje hodnocená stavba jednu variantu umístění stavby. Hodnocený záměr zahrnuje dvě varianty projektového řešení, které jsou výsledkem zvažování a hodnocení řady různých variant projektu v průběhu jeho přípravy a hodnocení připomínek doručených k oznámení záměru.
B.I.6. Popis technického a technologického řešení záměru

B.I.6.1. Koncept, urbanistické řešení

Navrženou dostavbou bytových domů u obchodního centra Lužiny vznikne soubor staveb, který dotvoří a zvýrazní střed této městské části. Nová zástavba vytvoří centrální akcent v jinak poměrně monotónní panelové zástavbě.

Objekt OC Lužiny, ke kterému objekty záměru přiléhají, není součástí záměru. Vzhledem k blízkosti objektů a k tomu, že část oken záměru bude orientována do prostoru nad střechou OC Lužiny, považuje zpracovatel dokumentace za účelné uvést, že po rekonstrukci OC Lužiny zůstane jeho střecha po určitou dobu ve stávajícím stavu s výjimkou nového proskleného zastřešení atria. Po dostavbě polyfunkčních objektů záměru se předpokládá, že střecha OC Lužiny bude rekonstruována a budou do ní zakomponovány ozeleňující prvky, které zlepší stávající prostředí.

Varianta 1

Varianta 2

Vyšší patra objektu (od 6. NP do 15. NP) jsou určena výhradně pro bydlení. V šestém nadzemním podlaží jsou vedle bytů projektovány sklípky pro rezidenty. Východní objekt (objekt Beta) je oproti variancí 1 záměru snížen o 1 nadzemní podlaží. Ostatní charakteristiky objektu zůstávají ve variantě 2 záměru v zásadě zachovány.

Západní objekt bude tvořen čtyřpatrovou podnoží, na které bude v její severní části vyrůstat obytná věž, která bude mít 26 nadzemních podlaží a bude tvořit výškovou dominantu území. Ve variantě 2 záměru nejsou v západním objektu uvažovány administrativní plochy a objekt je na rozdíl od varianty 1 záměru koncipován jako čistě bytový.

B.I.6.2. Stavebně konstrukční řešení

Oba polyfunkční domy budou vzhledem k základovým poměrům území nepodsklepené a budou založeny na betonových pilotách. Nosnou konstrukcí bude prefabrikovaný železobetonový skelet, vodorovné konstrukce budou ze ztraceného bednění (filigrány) s dobetonávkou desk. Obvodový plášť a vnitřní stěny a příčky budou zvýděnavané, obvodový plášť bude z vnější strany zateplen kontaktním zateplovacím systémem.

Výplně otvorů – okna a balkónové dveře budou definovány v dalších fázích projektové přípravy záměru. Vstupní dveře do bytů budou bezpečností s předepsanou požární odolností, vstupní dveře do domů budou kovové, prosklené. Úpravy povrchů budou ve standardním provedení – keramické obklady, dlažby, omítky, malby, povrchy podlah budou plovoucí. Střechy obou objektů budou ploché s živičnou krytinou.

B.I.6.3. Technické a technologické vybavení objektu

Chlazení

Instalace chlazení se předpokládá pouze v případě varianty 1 záměru, a to jen v kancelářích. Předběžně se uvažuje chladicí výkon 85 kW. Zdroje chladu budou umístěny na střeše nebo v prostoru garážových stání. V případě varianty 2 záměru se instalace chlazení nepředpokládá.

Vzduchotechnika

Větrání chráněných únikových cest

Chránění únikové cesty tvoří schodiště, předsíně a výtahy. Pro větrání chráněných únikových cest jsou navrženy ventilátory s příkonem 2,2 kW a 2,5 kW. Obě jednotky budou zálohovány dieselagregátem, doba zálohování bude 30 minut.

Větrání kuchyní / kuchyňských koutů místností se sanitárním zařízením

Větrání kuchyní / kuchyňských koutů, koupelen a WC je navrženo jako podtlakové s nuceným odvodem vzduchu. Sociální zařízení a kuchyně bytových jednotek budou napojeny na stoupací vedení, která budou větrány pomocí společných jednotek Alter o výkonu 700 m³/hod a 1000 m³/hod. Jednotky Alter budou umístěny na střechách objektů.

Větrání kanceláří

Větrání kanceláří se předpokládá jen v případě varianty 1 záměru, součástí varianty 2 záměru nebude kanceláře. Větrání kanceláří bude rovnotlaké a bude zajištěno vzduchotechnickými jednotkami s rekuperací tepla a automatickou regulací.

Větrání místností s dieselagregáty

Pro správnou funkci dieselagregátů je nutné zajistit jak přívod spalovacího vzduchu, tak přívod větracího vzduchu pro odvod produkovaného tepla. Větrání místností s dieselagregáty bude přirozené perforovanými fasádami a nebude proto napojeno na rozvody vzduchotechniky.

Větrání hromadných garáží

Větrání hromadných nadzemních garáží bude přirozené fasádou z drátěného pletiva po obvodu garáží a nebude proto napojeno na rozvody vzduchotechniky. V případě varianty 2 záměru bude menší část parkovacích stání umístěna na úrovni 5. nadzemního podlaží (NP) západního objektu (objekt Alfa), to znamená na střeše 4. NP vicepodlažních garáží - viz následující obrázek.
Náhradní zdroje elektrické energie

Součásti systému elektro- a hydro- rozvodů záměru bude instalace náhradních zdrojů elektrické energie – dieselagregátů, které budou zajišťovat dodávku elektrické energie pro požární systémy v případě výpadku její dodávky z vnější rozvodné sítě. Předpokládá se, že potřeby náhradního zásobování elektrickou energií objektů záměru budou kryty dvěma dieselagregáty. Ve východním objektu je navržen stroj typu Caterpillar GEP 65 (65 kVA / 52 kW) a v západním objektu je navržen Caterpillar GEP 88-4 (88 kVA / 70 kW).

Elektronická požární signalizace

Objekty budou vybaveny elektrickou požární signalizací (EPS) v garážích a v nadzemních podlažích. V garážích a nadzemních podlažích je EPS navržena jako nadstandardní zařízení zajišťující bezpečnou evakuaci v případě požáru. Kouřová čidla EPS budou umístěna na chodbách vedoucích do předsíní. V předsíních a ve schodištích budou umístěna tlačítka EPS, při jejichž aktivaci se okamžitě uvedou do činnosti požárně bezpečnostní zařízení v objektu (větrání únikových cest a další).

B.I.6.4. Napojení na infrastrukturu

Záměr „Polyfunkční domy – Centrum Lužiny“ bude za běžného provozu napojen na rozvod pitné vody, rozvod elektrická energie, rozvod tepla z centrálního zdroje tepla (CZT), slaboproudé, případně optické kably a na splaškovou a dešťovou kanalizaci.

Předmětem hodnocení podle zákona číslo 100/2001 Sb., o posuzování vlivů na životní prostředí, nejsou kapacity technické infrastruktury. Napojení záměru na technickou infrastrukturu bude předmětem zkoumání v dalších stupních projektové přípravy záměru. Souhlasy správců jednotlivých sítí s napojením záměru budou podmínkou pro vydání příslušných povolení a rozhodnutí (územní rozhodnutí, stavební povolení).

Zásobování vodou

Odběr vody pro potřeby záměru bude zajištěn z nově navrhovaných vodovodních připojek, které budou napojeny na stávající vodovodní řady vedené kolem objektů záměru v kolektorech.

Zásobování teplem

Objekty záměru budou napojeny nově navrhovanými teplovodními připojkami na místní teplovody vedoucí v kolektorech v okolních ulicích. Západní objekt (objekt ALFA) bude napojen z ulice Archeologická a východní objekt (objekt BETA) bude napojen z ulice Piškova.

Ohřev teplé vody bude pro oba objekty řešen centrálně ve výměníkových stanicích. V každém objektu bude samostatná výměníková stanice, ze které budou zásobovány teplom a teplou užitkovou vodou (TUV) jednotlivé byty (alternativně lze pro přípravu TUV uvažovat použití bytových stanic MEIBES).

Napojení na splaškovou a dešťovou kanalizaci

Odvádění splaškových odpadních vod z objektů záměru bude zajištěno prostřednictvím nových připojek napojených na stávající veřejné řady oddílné splaškové a dešťové kanalizace vedené v blízkosti objektů záměru v ulici Archeologická. Pod oběma objekty záměru bude zachována splašková a dešťová kanalizace napojující na veřejnou kanalizační síť stávající Obchodní centrum Lužiny.

Zásobování elektrickou energií

Připojka sílnoproudou (nízkého napětí - NN) bude vedena z místních rozvodů NN v ulici Archeologická do objektů záměru, kde v garážových podlažích budou umístěny elektroměry pro jednotlivé byty. Od elektroměrů budou připojeny jednotlivé byty.

Připojení na rozvody slaboprodu

Do objektů záměru bude zaveden telefonní kabel z místní veřejné sítě v ulici Archeologická, ze kterého budou rozvedeny připojky do jednotlivých bytů.
B.I.7. Předpokládaný termín zahájení realizace záměru a jeho dokončení

Předpokládaný termín zahájení stavby záměru „Polyfunkční domy – Centrum Lužiny” je rok 2016. Předpokládaný termín ukončení výstavby je rok 2018. Údaje o předpokládaném termínu zahájení realizace záměru a jeho dokončení je však třeba chápout jako předběžné, protože se mohou změnit v závislosti na postupu projekčních prací a zejména v závislosti na průběhu povolovacích řízení.

Stavba je navržena ve dvou etapách (každý ze dvou samostatných objektů záměru bude samostatnou etapou). Jako první bude zahájena výstavba východního objektu záměru (objekt Beta). Zahájení stavby západního objektu (objekt Alfa) se předpokládá až po dokončení zakládání východního objektu.

B.I.8. Výčet dotčených územně samosprávných celků

<table>
<thead>
<tr>
<th>Kraj:</th>
<th>hlavní město Praha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Město:</td>
<td>hlavní město Praha</td>
</tr>
<tr>
<td>Městská část:</td>
<td>Praha 13</td>
</tr>
</tbody>
</table>

Výčet navazujících rozhodnutí podle § 10 odstavec 4 a správních úřadů, které budou tato rozhodnutí vydávat, je uveden v následující tabulce. Uvedený výčet nemusí být úplný a může být v dalších stupních projektové přípravy záměru doplněn.

<table>
<thead>
<tr>
<th>Rozhodnutí</th>
<th>Příslušný správní úřad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rozhodnutí o umístění stavby (Územní rozhodnutí)</td>
<td>Městská část Praha 13</td>
</tr>
<tr>
<td>Souhlas s kácením stromů</td>
<td>Úřad městské části Praha 13</td>
</tr>
<tr>
<td>Stavební povolení</td>
<td>Sluneční náměstí 2580/13</td>
</tr>
<tr>
<td>Rozhodnutí vodoprávního úřadu (Vodoprávní rozhodnutí)</td>
<td>158 00 Praha 5</td>
</tr>
<tr>
<td>Kolauďační souhlas</td>
<td></td>
</tr>
</tbody>
</table>

B.I.10 Doplňující údaje

Generální projektant

SEA Architekt spol. s r.o.
V Jezírku 520, 253 46 Průhonice
IČ: 14803089
tel: 241 483 438, 604234472; e-mail: sea@iol.cz
B.II. Údaje o vstupech

B.II.1. Půda

Zábor půdy

Pozemky, které budou dotčeny výstavbou záměru „Polyfunkční domy – Centrum Lužiny“, se nacházejí v katastrálním území Štodůlky (k.u. číslo 755541). Pro variantu 1 záměru i pro variantu 2 záměru budou využity stejné pozemky. Parcelní čísla pozemků dotčených stavbou záměru, druhy těchto pozemků, jejich stávající způsob využití a velikosti ploch jednotlivých parcel podle výpisu z katastru nemovitostí jsou uvedeny v následující tabulce.

Tabulka B3 Pozemky dotčené realizací záměru a jejich charakteristiky podle katastru nemovitostí (uvedena je celá plocha pozemku dle katastru)

<table>
<thead>
<tr>
<th>Číslo parcely</th>
<th>Plocha v m²</th>
<th>Druh pozemku</th>
<th>Stávající způsob využití</th>
</tr>
</thead>
<tbody>
<tr>
<td>2131/733</td>
<td>2 134</td>
<td>ostatní plocha</td>
<td>jiná plocha</td>
</tr>
<tr>
<td>2131/734</td>
<td>898</td>
<td>ostatní plocha</td>
<td>jiná plocha</td>
</tr>
</tbody>
</table>

Podle výpisu z katastru nemovitostí jsou pozemky dotčené záměrem ve vlastnictví investorů, společnosti LUŽINY ALFA s.r.o., Archeologická 2256/1, 155 00 Praha 5 – Stodůlky (majitel pozemku p.č. 2131/733) a společnosti LUŽINY BETA s.r.o., Archeologická 2256/1, 155 00 Praha 5 – Stodůlky (majitel pozemku p.č. 2131/734).

Vlastní stavební objekty záměru budou realizovány výlučně na pozemcích v majetku investora. Na jiných pozemcích bude realizována pouze nezbytná související infrastruktura (vjezdy do garáží, inženýrské sítě). S realizací komunikací a inženýrských sítí na pozemcích, které nejsou v majetku investora, bude nezbytné zajistit v dalších stupních projektové přípravy záměru souhlas jejich majitelů.

Pozemky, ležící mimo vlastní území záměru, mohou být stavbou dotčeny dočasně, pouze po dobu výstavby inženýrských sítí nebo komunikací souvisejících se záměrem. Snahou investora a projektanta bude minimalizace dočasných záborů jak z hlediska jejich rozsahu, tak z hlediska jejich trvání.

B.II.2. Voda

Jak na staveništi, tak za běžného provozu záměru bude používána pouze pitná voda. Veškeré požadavky na pitnou vodu budou kryty dodávkami z veřejné vodovodní sítě.
Odběr vody

Odběr vody

Trvalý (kontinuální) odběr vody pro období stavby záměru není uvažován. Odběr vody v průběhu stavby bude nahodilý v závislosti na momentální potřebě. Odběr vody pro potřeby výstavby a zařízení staveniště bude zajištěn novými připojkami z existujících rozvodů v zájmovém území záměru. Na stávající rozvody budou napojeny staveništní rozvody vedoucí k jednotlivým místům spotřeby.

Na staveništi bude voda využívána především pro technologické účely (zejména k ošetřování betonu, případně do malt, stavebních lepidel a podobně) a v určité míře také k osobní hygieně a případně i k pití pracovníků na stavbě. V případě potřeby může být voda použita také ke skrápění pražných ploch nebo k mytí znečištěných vozovek. Mimo areál stavby bude voda využívána především pro přípravu betonových směsí v betonárnách.

Odběr vody

Odběr výstavby

Spotřeba vody pro období výstavby nebyla ve stávající fázi projektové přípravy stavby stanovena. Spotřeba vody na staveništi nebude mít vliv na zásobování obyvatelstva pitnou vodou.

Odběr provozu

Pro fázi běžného provozu záměru byla bilance potřeby pitné vody stanovena projektantem odpovědným za projekt zásobování vodou podle směrnic čísel roční potřeby vody dle přílohy č. 12 k Vyhlášce č. 428/2001 Sb., kterou se provádí zákon číslo 274/2001 Sb., o vodovodech a kanalizacích pro veřejnou potřebu, ve znění pozdějších předpisů. Výpočtové hodnoty spotřeby vody jsou pro variant 1 záměru i pro variantu 2 záměru uvedeny v následující tabulce.

Požární voda

Zásobování požární vodou bude zajištěno z veřejné vodovodní sítě a dimenzování rozvodů bude provedeno v souladu s ČSN 73 0873. Soulad záměru s požárními předpisy, bude konzultován se specialisty Hasičského záchranného sboru České republiky (HZS ČR) v průběhu další projektové přípravy záměru a bude předmětem územního a stavebního řízení.
Tabulka B4 Výpočtová bilance potřeby pitné vody (zaokrouhleno)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota parametru v m³</th>
<th>Západní objekt</th>
<th>Východní objekt</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Var. 1</td>
<td>Var. 2</td>
<td>Var. 1</td>
<td>Var. 2</td>
</tr>
<tr>
<td>Celková roční potřeba vody</td>
<td>18 181</td>
<td>14 087</td>
<td>8 059</td>
<td>8 059</td>
</tr>
<tr>
<td>Maximální denní potřeba vody</td>
<td>64,3</td>
<td>49,8</td>
<td>28,5</td>
<td>28,5</td>
</tr>
<tr>
<td>Maximální hodinová potřeba vody</td>
<td>7,0</td>
<td>3,7</td>
<td>2,1</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Poznámka: Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru

Záměr nebude vyžadovat odběr technologické vody.

B.II.3. Ostatní surovinové a energetické zdroje

B.II.3.1. Suroviny a materiály

Ve stávající fázi projektové přípravy záměru nelze odpovědně stanovit zdroje surovin a materiálů pro období výstavby ani jejich přesná množství. Největší objem bude představovat beton pro betonáž na stavbě (základy, základové desky, stropy, komunikace, a podobně), betonové prefabrikáty pro výstavbu objektů (sloupy, stropní panely, překlady) a ocel.

Dalšími materiálmy pro výstavbu budou kamenivo a živice pro stavbu a povrchové úpravy komunikací, materiály vnitřních konstrukcí, izolační materiály, materiály pro rozvod vody a tepla, materiály pro rozvod elektrické energie a pro venkovní osvětlení (kably, rozvaděče, svítidla veřejného osvětlení, atd.), materiály pro povrchové úpravy, sklo, dřevo a další materiály.

B.II.3.2. Energie a paliva

Období výstavby

V průběhu stavby bude využívána zejména elektrická energie pro napájení stavby (například osvětlení stavenišť, elektrické pohony jeřábů a dalších stavebních strojů, pohony elektrického nářadí, napájení válečků atd.) a zařízení stavenišť (drobné elektrospotřebiče, osvětlení). Paliva (pohonné hmoty) budou využívána pro stavební stroje poháněné spalovacími motory a pro nákladní automobily.
Zdrojem elektrické energie pro zařízení stavenišť záměru bude veřejná elektrorozvodná síť Pre, a.s. a zdrojem paliv budou komerční distributoři pohonných hmot. Potřeba energií ani paliv pro období stavby nebyla v této fázi projektové přípravy stavby stanovena.

Období provozu

Po uvedení záměru „Polyfunkční domy – Centrum Lužiny“ do běžného provozu bude využívána elektrická energie z veřejné elektrorozvodné sítě Pre, a.s. a teplo z centrálního zdroje zásobování teplem (CZT). Nafta pro náhradní zdroje elektrické energie bude odebrána od komerčních dodavatelů kapalných paliv.

Zásobování elektrickou energií

Zásobování elektrickou energií

V případě varianty 1 i varianty 2 záměru se uvažuje využití elektrické energie pro vlastní spotřebu uživatelů bytů (osvětlení, drobné spotřebiče, atd.), pro zajištění provozu technického zázemí objektů záměru (osvětlení společných prostor v objektech, výtahy, oběhová čerpadla, pohony větrání a podobně) a pro veřejné osvětlení. Ve variantě 1 záměru se navíc uvažuje zásobování elektrickou energií pro potřebu kanceláří (osvětlení, výpočetní technika, drobné spotřebiče a podobně). Požadavky na zásobování elektrickou energií jsou pro obě varianty záměru uvedeny v následující tabulce.

Tabulka B5 Výpočtová bilance spotřeby elektrické energie v kilowatech (silnoproud)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota parametru v kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Celkový instalovaný příkon (P_i)</td>
<td>2 144</td>
</tr>
<tr>
<td>Celkový soudobý příkon (P_s)</td>
<td>396</td>
</tr>
</tbody>
</table>

Poznámky: Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru
* uvažovaná celková provozní současnost areálu – 0,80

Pro nouzové zásobování elektrickou energií při výpadku zásobování z rozvodné sítě (především pro zásobování požárních systémů a pohonů požárního větrání) se předpokládá instalace dvou náhradních zdrojů elektrické energie (dieselagregátů). Ve východním objektu je navrženo umístění stroje typu Caterpillar GEP 65 (65 kVA / 52 kW), v západním objektu je navržen stroj typu Caterpillar GEP 88-4 (88 kVA / 70 kW).

Zásobování teplem

Zdrojem tepla pro záměr „Polyfunkční domy – Centrum Lužiny“ bude centrální zdroj zásobování teplem (CZT). Požadavky na zásobování záměru teplem jsou uvedeny v následující tabulce.
Tabulka B6 Výpočtová bilance potřeby tepla v megawatthodinách

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota parametru v MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Západní objekt Var. 1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Západní objekt Var. 2</td>
</tr>
<tr>
<td>Celková potřeba tepla za rok $- Q_t$</td>
<td>1 227</td>
</tr>
<tr>
<td></td>
<td>689</td>
</tr>
</tbody>
</table>

Poznámky: Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru

Chlazení

Ve variantě 1 záměru se předpokládá instalace chlazení v kancelářích. Předpokládá se uvažují chladicí výkon 85 kW (příkon přibližně 30 kW/400V). Zdroje chladu jsou navrženy na střeše nebo v prostoru garážových stání. Ve variantě 2 nejsou kanceláře plánovány, a proto se v této variantě záměru instalace chlazení neuvažuje.

Zásobování naftou pro náhradní zdroje elektrické energie

Zdrojem nafty pro náhradní zdroje elektrické energie (dieselagregáty) budou komerční distributoři pohonných hmot. Potřeba pohonných hmot pro dieselagregáty nebyla stanovena, protože se bude odvíjet od doby, po kterou budou náhradní zdroje v provozu.

B.II.4. Nároky na dopravní a jinou infrastrukturu

B.II.4.1. Dopravní napojení

Hlavní příjezdové a odjezdové trasy automobilové dopravy obsluhující objekty záměru budou v obou variantách záměru vedeny po ulici Archeologická, která ústí na obou stranách (z jedné strany v pokračování po ulici Mukařovského) do kapacitní městské komunikace Jeremiášovy. Jeremiášova ulice je řazena v kategorii sběrných komunikací městského významu a zajišťuje další komunikační vazby dotčeného území na ulice Radlickou, Bucharovu a Rozvadovskou spojku. Tyto komunikace pak zprostředkují vazby jak ve směru k trase Městského tak Pražského okruhu.

Vlastní napojení objektů záměru na veřejné komunikace bude u obou variant záměru využit především stávající přístupové cesty k Obchodnímu centru Lužiny. Východní objekt záměru (objekt Beta) bude krátkým propojením přes stávající parkoviště napojen do ulice Archeologická. Automobily obsluhující východní objekt záměru tak při příjezdu ani při odjezdu nebudou jezdit ulicí Plíškova.

Prosinec 2014
Číslo úkolu: 2014-S-06

Ve variantě 2 záměru byl projekt upraven a doplňuje průchod objektem OC Lužiny o paralelní venkovní pěší komunikaci podél západní strany záměru. Pro pohyb pěších od stanice metra do ulice Brdečkova bude podél objektu Alfa vybudována bezbariérová venkovní cesta, otevřená a volně přístupná 24 hodin denně. Nově navrhované řešení eliminuje původní kolizní dopravní situace a zajišťuje bariérový průchod územím. Stejné řešení lze realizovat i ve variantě 1 záměru.

B.II.4.2 Doprava v zájmovém území

S ohledem na zaběhnutou praxi v hlavním městě Praze, kdy je pro potřeby dopravních studií požadována autorizace odborným pracovištěm, byly intenzity automobilové dopravy na komunikacích v řezném území stanoveny v dopravněinženýrských podkladech (dopravních studiích), které zpracovala Technická správa komunikací hlavního města Prahy (TSK), Úsek dopravního inženýrství. Dopravní studie „Dopravněinženýrské podklady pro záměr „Polyfunkční domy – Centrum Lužiny“ zpracovala TSK, Úsek dopravního inženýrství, pro variantu 1 v červnu 2013 a pro variantu 2 v červenci 2014.

V přílohách příslušných dopravních studií jsou pro obě varianty záměru uvedeny kartogramy výhledových intenzit automobilové dopravy, včetně rozpadu zdrojové a cílové dopravy. Dopravní studie pro obě varianty záměru jsou v plném rozsahu uvedeny v příloze číslo 8 dokumentace.

Protože v dotčeném území nebyl dostatek údajů od autorizovaného zpracovatele TSK ÚDI, týkajících se současných intenzit dopravy, zpracovala ČVUT fakulta dopravní, Ústav dopravních systémů, dopravní průzkum aktuálního stavu automobilové dopravy v dotčeném území, který je, stejně jako dopravní studie, uveden v příloze číslo 8 dokumentace. Výsledky tohoto průzkumu byly v dopravních studiích vzaty v úvahu.

B.II.4.3 Doprava v klidu a vyvolaná doprava (doprava související s provozem areálu)

Doprava v klidu (parkování)

Automobilová doprava záměru bude souviset s provozem v jeho hromadných garážích. Ve variantě 1 záměru se předpokládá, že doprava v klidu (parkování) i doprava vyvolaná provozem záměru bude tvorená z převážné části dopravou obyvatel bytových domů a jejich návštěvníků a z menší části dopravou zaměstnanců a návštěvníků kanceláří v západním objektu záměru. Ve variantě 2 nejsou komerční plochy uvažovány, a proto bude doprava související s provozem záměru tvorená pouze dopravou obyvatel a návštěvníků bytových domů.
Vzhledem k tomu, že příprava projektu byla zahájena před odsouhlasením nových „Pražských stavebních předpisů“, byl výpočet požadovaného počtu parkovacích stání proveden podle vyhlášky č. 26/1999 Sb. HMP, o obecně technických požadavcích na výstavbu na území hlavního města Prahy, ve znění pozdějších předpisů. Počet parkovacích stání se podle této vyhlášky stanoví pomocí přepočtových koeficientů na základě velikostí jednotlivých funkčních ploch objektů a způsobů jejich užívání, případně podle počtu lůžek v ubytovacích zařízeních nebo návštěvníků, uvažovaných pro jednotlivé funkce.

Ve smyslu výše uvedené vyhlášky a příslušných příloh je navrhovaný záměr situován v zóně 4 a ve spádové oblasti stanic metra, a proto se v dalších postupech uplatňuje redukující koeficient dopravní obsluhy K_d v hodnotě 0,9. V případě parkovacích stání pro bydlení se redukce výpočtového stavu koeficientem dopravní obsluhy K_d neuplatní. Koeficient vlivu území K_ú je roven jedné a rovněž se neuplatní.

Bilance celkových kapacit nové zástavby a požadovaný počet parkovacích stání jsou jak pro variantu 1 záměru, tak pro variantu 2 záměru uvedeny v následujících dvou tabulkách. Parkovací stavby “Polyfunkční domy – Centrum Lužiny“ budou umístěna v hromadných garážích, které se budou nacházet v nadzemních podlažích obou objektů záměru.

Tabulka B7
Bilance celkových kapacit nové stavby a požadovaný počet parkovacích stání dle vyhlášky číslo 26/1999 Sb. – západní objekt (objekt Alfa)

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Jednotka</th>
<th>1 stání připadá na 1 jednotku</th>
<th>Počet jednotek</th>
<th>Základní počet stání P_z</th>
<th>Požadovaný počet stání P_p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Var. 1</td>
<td>Var. 2</td>
<td>Var. 1</td>
<td>Var. 2</td>
</tr>
<tr>
<td>Byt o jedné obytné místnosti</td>
<td>počet bytů</td>
<td>0,5</td>
<td>17</td>
<td>42</td>
<td>8,5</td>
</tr>
<tr>
<td>Byt do 100 m² celkové plochy</td>
<td>počet bytů</td>
<td>1</td>
<td>148</td>
<td>126</td>
<td>148,0</td>
</tr>
<tr>
<td>Byt nad 100 m² celkové plochy</td>
<td>počet bytů</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>8,0</td>
</tr>
<tr>
<td>Návštěvy v bytech</td>
<td>počet bytů</td>
<td>0,1</td>
<td>169</td>
<td>168</td>
<td>16,9</td>
</tr>
<tr>
<td>Administrativa s malou návštěvností</td>
<td>m² kancel. plochy</td>
<td>40</td>
<td>1 568</td>
<td>0</td>
<td>41,0</td>
</tr>
<tr>
<td>Celkový požadovaný počet stání pro východní objekt</td>
<td></td>
<td>223</td>
<td></td>
<td>164</td>
<td></td>
</tr>
</tbody>
</table>

Poznámka: Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Tabulka B8 Bilance celkových kapacit nové stavby a požadovaný počet parkovacích stání dle vyhlášky číslo 26/1999 Sb. – východní objekt (objekt Beta)

<table>
<thead>
<tr>
<th>Funkce</th>
<th>Jednotka</th>
<th>1 stání případá na x jednotek</th>
<th>Počet jednotek</th>
<th>Základní počet stání, Počet stání</th>
<th>Požadovaný počet stání, Počet stání</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byt o jedné obytné místnosti</td>
<td>počet bytů</td>
<td>0,5</td>
<td>51</td>
<td>25,5</td>
<td>28</td>
</tr>
<tr>
<td>Byt do 100 m² celkové plochy</td>
<td>počet bytů</td>
<td>1</td>
<td>80</td>
<td>69</td>
<td>80</td>
</tr>
<tr>
<td>Byt nad 100 m² celkové plochy</td>
<td>počet bytů</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Návštěvy v bytech</td>
<td>počet bytů</td>
<td>0,1</td>
<td>134</td>
<td>125</td>
<td>13</td>
</tr>
</tbody>
</table>

Celkový požadovaný počet stání pro východní objekt 126 110

Poznámka: Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru

Parkování - varianta 1 záměru

Celkový počet parkovacích stání pro potřeby vlastního záměru, stanovený podle požadavků vyhlášky č. 26/1999 Sb. HMP, o obecně technických požadavcích na výstavbu na území hlavního města Prahy (vyhláška o OTP), ve znění pozdějších předpisů, je 349. Minimálně 5,0 % z celkového počtu stání záměru bude určeno pro osoby se sníženou schopností orientace a pohybu. Celkový počet parkovacích stání navrhovaných v obou objektech záměru je 467 (329 v západním objektu a 138 ve východním objektu).

Rozdíl mezi počtem parkovacích stání požadovaným vyhláškou o OTP (349 parkovacích stání pro potřeby záměru) a celkovým počtem navržených parkovacích stání činí 118 stání. Uvedených 118 parkovacích stání představuje jednak náhradu za parkovací kapacit stávajících zásobovacích dvorů OC Lužiny, které budou zastavěny objekty záměru (z původních 98 parkovacích bylo navýšeno o 8 na 116), a náhradu za parkovací stání zabraná výstavbou v prostoru budoucích vjezdů (přístupových ramp) do objektů záměru (12 stání). Stání vybudovaná navíc budou využita obyvateli v lokalitě.

Parkování - varianta 2 záměru

Celkový počet parkovacích stání pro potřeby vlastního záměru, stanovený podle požadavků vyhlášky č. 26/1999 Sb. HMP, o obecně technických požadavcích na výstavbu na území hlavního města Prahy (vyhláška o OTP), ve znění pozdějších předpisů, je 274. Minimálně 5,0 % z celkového počtu stání záměru bude určeno pro osoby se sníženou schopností orientace a pohybu. Celkový počet parkovacích stání navrhovaných v obou objektech záměru je 421 (295 v západním objektu a 126 ve východním objektu).
Rozdíl mezi počtem parkovacích stání požadovaným vyhláškou o OTP (274 parkovacích stání pro potřeby záměru) a celkovým počtem navržených parkovacích stání činí 147 stání. Uvedených 147 parkovacích stání představuje jednak náhradu za parkovací kapacity stávajících zásobovacích dvorů OC Lužiny, které budou zastavěny objekty záměru (z původních 98 parkovacích bylo navýšeno o 30 na 128) a náhradu za parkovací stání zabraná výstavbou v prostoru budoucích vjezdů (přístupových ramp) do objektů záměru (19 stání). Stání vybudovaná navíc budou využita obyvateli v lokalitě.

Zdrojová/cílová doprava (doprava vyvolaná záměrem)

V následující tabulce jsou pro obě varianty záměru uvedeny předpokládané objemy dopravy vyvolané provozem záměru na přilehlých komunikacích. Objemé zdrojové a cílové dopravy ze záměru byly odvozeny na základě kvantifikace jednotlivých funkcí v objektech záměru (počty a výměry bytů, druh administrativy) a s ohledem na polohu záměru ve městě.

Předpokládané počty jízd osobních automobilů v jednom směru za 24 hodin průměrného pracovního dne (pro příjezd a odjezd se předpokládá stejný počet jízd) jsou pro obě varianty záměru uvedeny v následující tabulce. Ve výpočtech byla zohledněna poloha plánovaného objektu přímo u stanice metra B - Lužiny

Dopravní řešení záměru předpokládá – vzhledem k minimální vzdálenosti od stanice metra Lužiny – snížené nároky nových obyvatel na soukromou automobilovou dopravu. I když počty parkovacích stání budou odpovídat požadavkům OTP, lze vzhledem k umístění záměru v těsné blízkosti metra předpokládat sníženou intenzitu využívání soukromé automobilové dopravy, zejména v pracovních dnech, což je jev je patrný i v jiných metropoliích.

Tabulka B9 Bilance automobilové dopravy vyvolané realizací záměru (počty parkovacích stání v tabulce zahrnují parkovací stání pro návštěvy)

<table>
<thead>
<tr>
<th>Označení objektu</th>
<th>Funkce</th>
<th>Počet stání Var. 1</th>
<th>Počet jízd OA Var. 1</th>
<th>Počet stání Var. 2</th>
<th>Počet jízd OA Var. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>východní objekt (objekt BETA)</td>
<td>byt o 1 obytné místnosti</td>
<td>31</td>
<td>34</td>
<td>34</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>byt do 100 m²</td>
<td>88</td>
<td>76</td>
<td>86</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>byt nad 100 m²</td>
<td>7</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Celkem východní objekt</td>
<td></td>
<td>126</td>
<td>110</td>
<td>126</td>
<td>112</td>
</tr>
<tr>
<td>západní objekt (objekt Alfa)</td>
<td>byt o 1 obytné místnosti</td>
<td>10</td>
<td>25</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>byt do 100 m²</td>
<td>163</td>
<td>139</td>
<td>160</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>byt nad 100 m²</td>
<td>9</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>administrativa</td>
<td>41</td>
<td>0</td>
<td>61</td>
<td>0</td>
</tr>
<tr>
<td>Celkem západní objekt</td>
<td></td>
<td>223</td>
<td>164</td>
<td>240</td>
<td>165</td>
</tr>
<tr>
<td>Celkem celý záměr</td>
<td></td>
<td>349</td>
<td>274</td>
<td>366</td>
<td>277</td>
</tr>
</tbody>
</table>

Poznámka: Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Výše uvedené hodnoty intenzit vyvolané dopravy byly použity pro zpracování kartogramů výhledových intenzit dopravy v dotčeném území, včetně stanovení rozpadů této vyvolané zdrojové a cílové dopravy. Kartogramy intenzit dopravy jsou pro obě varianty záměru součástí příslušných dopravních studií, které jsou v plném rozsahu uvedeny v příloze číslo 8 dokumentace.

Doprava vyvolaná záměrem - varianta 1 záměru

Z počtů jízd osobní automobilové dopravy vyvolané realizací záměru, které jsou uvedeny výše v tabulce, plyne, že za 24 hodin běžného pracovního dne přijede ve variantě 1 do objektů záměru 366 osobních vozidel obsluhujících záměr (1 automobil = 1 příjezd a 1 odjezd). Pomalá vozidla (to znamená nákladní automobily nad 3,5 t) obsluhující záměr jsou ve variantě 1 uvažována v počtu 5 vozidel za 24 hodin běžného pracovního dne. Nově generovaná doprava z 8 nových parkovacích stání, vybudovaných v hromadných garážích záměru navíc oproti stavu před realizací záměru, se uvažuje ve výši 9 osobních automobilů. Předpokládá se, že parkovací stání vybudovaná navíc budou využita obyvateli v lokalitě a nevyvolají proto reálný nárůst dopravy.

Doprava vyvolaná záměrem - varianta 2 záměru

Z počtů jízd osobní automobilové dopravy vyvolané realizací záměru, které jsou uvedeny výše v tabulce, plyne, že za 24 hodin běžného pracovního dne přijede ve variantě 2 do objektů záměru 277 osobních vozidel obsluhujících záměr (1 automobil = 1 příjezd a 1 odjezd). Pomalá vozidla (to znamená nákladní automobily nad 3,5 t) obsluhující záměr jsou ve variantě 2 uvažována v počtu 4 vozidel za 24 hodin běžného pracovního dne. Nově generovaná doprava z 30 nových parkovacích stání, vybudovaných v hromadných garážích záměru navíc oproti stavu před realizací záměru, se uvažuje ve výši 38 osobních automobilů. Předpokládá se, že parkovací stání vybudovaná navíc budou využita obyvateli v lokalitě a nevyvolají proto reálný nárůst dopravy.

Nároky na jinou infrastrukturu

Záměr “Polyfunkční domy – Centrum Lužiny” bude ze stávajících inženýrských sítí v zájmovém území a v jeho okolí napojen na rozvod elektrické energie, rozvod pitné vody, na oddílnou veřejnou (městskou) kanalizaci a na telekomunikační a datové sítě. Kromě nároků na výstavbu infrastruktury tak, jak je uvedeno v příslušných kapitolách dokumentace, nevzniknou žádné další nároky na budování infrastruktury.

B.II.5. Chráněná území a ochranná pásma

 Chráněná území podle zvláštních zákonů

Ochranná pásma podle zvláštních zákonů

Do zájmového území pro výstavbu záměru nezasahuje ochranné pásmo chráněných území ve smyslu zákona číslo 114/1992 Sb., o ochraně přírody a krajiny, ve znění pozdějších předpisů. Zájmové území pro výstavbu záměru neleží v ochranném pásmu lesa, definovaném zákonem 289/1995 Sb., o lesích a o změně a doplňení některých zákonů (lesní zákon), ve znění pozdějších předpisů, které je stanoveno o šířce 50 m od okraje lesa (dle vymezení lesa v lesní mapě).

Záměr se nenalézá v ochranném pásmu podle zákona číslo 164/2001 Sb., o přírodních léčivých zdrojích, zdrojích přírodních minerálních vod, přírodních léčebných lázních a lázeňských místech a o změně některých souvisejících zákonů (lázeňský zákon), ve znění pozdějších předpisů (nenachází v ochranném pásmu přírodních léčivých zdrojů).

Připravovaný záměr se nenalézá v pásmu hygienické ochrany vod ve smyslu zákona číslo 254/2001 Sb., o vodách, ve znění pozdějších předpisů.

Chráněná území a ochranná pásma v oblasti památkové péče

Zájmové území pro realizaci záměru neleží v památkové zóně vyhlášené vyhláškou HMP číslo 10/1993 Sb., o prohlášení části území hl. m. Prahy za památkové zóny a o určení podmínek jejich ochrany. Záměr nezasahuje do ochranného pásma nemovité kulturní památky nebo nemovité národní kulturní památky.

Zátopová území

Zájmové území pro výstavbu záměru se nenachází v zátopovém (inundačním) pásmu vodních toků, které bylo vymezeno Územním plánem hlavního města Prahy.

Ochranná pásma inženýrských sítí a staveb

Za ochranná pásma je nutno dle příslušných předpisů považovat i pásma vymezená pro ochranu lineárních staveb a inženýrských sítí, které procházejí přes pozemky dotčené stavbou nebo se nalézají v dosahu možného vlivu stavenišť. Na všechny stávající i projektované inženýrské síťi se vztahují ochranná pásma stanovená legislativou a příslušnými normativy, která musí být během stavby respektována.

Síť a zařízení pro energetiku jsou chráněny ochrannými pásmy dle zákona číslo 458/2000 Sb., o podmínkách podnikání a o výkonu státní správy v energetických odvětvích a o změně některých zákonů (energetický zákon), ve znění pozdějších předpisů.
Ochranná pásma kanalizačních stok jsou stanovena v zákoně číslo 274/2001 Sb., o vodovodech a kanalizacích pro veřejnou potřebu a o změně některých zákonů (zákon o vodovodech a kanalizacích), ve znění pozdějších předpisů. Pro ostatní inženýrské sítě v prostoru budoucího staveniště se ochranná pásma stanoví podle obecných norem nebo předpisů správců sítí.

Účelem ochranných pásem inženýrských sítí je jednak jejich ochrana před poškozením v průběhu výstavby, jednak ochrana před znehodnocením v důsledku vzájemného ovlivňování a z toho vyplývajícího zhoršení provozních vlastností. Pro ochranná pásma nejvýznamnějších inženýrských sítí a ochranná pásma staveb platí následující hodnoty:

- **Plyn**
 U plynovodů a plynárenských zařízení se ochranným pásem rozumí prostor ve vodorovně vzdálenosti od půdorysu plynárenského zařízení, měřeno kolmo na jeho obrys. Nízkotlaký (NTL) a středotlaký (STL) plynovod v zastavěné části obce má ochranné pásmo 1 m na obě strany. Ochranná pásma plynovodů a přípojek vedených mimo zastavěné části obce jsou následující (na každou stranu, měřeno od líce potrubí):
 a) do průměru 200 mm včetně - 4 m
 b) od průměru 200 mm do 500 mm - 8 m
 c) nad průměr 500 mm - 12 m.
 Ochranné pásmo technologických objektů je 4 m.

- **Zařízení a sítě pro energetiku (rozvod elektrické energie)**
 U vestavěných transformačních stanic sahá ochranné pásmo do vzdálenosti 1 m od obestavění, u kompaktních a zděných transformačních stanic má ochranné pásmo šířku 2 m. Pro podzemní kabelová vedení je u kabelů do / nad 110 kV stanoveno ochranné pásmo 1 m / 3 m od krajního kabelu.
 Ochranné pásmo venkovního (nadzemního) vedení elektrické energie je vymezeno svislými rovinami vedenými po obou stranách vedení od krajních vodičů a mění se podle napětí:
 a) nad 1 kV do 35 kV - 7 m
 b) nad 35 kV do 110 kV - 12 m
 c) nad 110 kV do 220kV - 15 m
 d) nad 220 kV do 440 kV - 20 m
 e) nad 440 kV - 30 m

- **Ochranné pásma teplárenských zařízení**
 a) u zařízení na výrobu či rozvod tepla – 2,5 m od zařízení,
 b) u výměníkových stanic – 2,5 m od půdorysu.

- **Kanalizace**
 Ochranné pásma kanalizace je vymezeno vodorovnou vzdáleností od vnějšího líce stěny kanalizační stoky a je stanoveno:
 a) 1,5 metru na každou stranu u kanalizačních stok do průměru 500 mm včetně,
 b) 2,5 metru na každou stranu u kanalizačních stok nad průměr 500 mm.
• **Vodovod**
 Pro vodovodní potrubí jsou stanovena ochranná pásma od vnějšího lící potrubí, a to 1,5 metru pro potrubí o průměru do DN 500 a 2,5 m pro potrubí o průměru nad DN 500, přičemž veřejnoprávní orgán má právo stanovit jiný rozsah ochranného pásma. Při uložení do větší hloubky než 2,5m se ochranné pásmo vodovodu rozšířuje o 1 metr.

• **Sdělovací zařízení**
 Ochranná pásma pro místní i dálková sdělovací zařízení (telefonní kabely, kably pro datový přenos, atd.) stanovuje zákon č. 127/2005 Sb. (zákon o elektronických komunikacích), ve znění pozdějších předpisů, a příslušné prováděcí vyhlášky.

 V zastavěných územích, podobně jako v případě rozvodů vody a kanalizace platí vzdálenosti, hloubky a odstupy od ostatních vedení stanovené v ČSN 73 6005 – Prostorové uspořádání sítí technického vybavení.

 Pro dálkové podzemní kabely je ochranné pásmo široké 2 m a probíhá po celé délce kabelové trasy. V určitých bodech se může toto pásmo rozšiřovat až na 3 m. Hloubka ochranného pásma činí 3 m a výška těž 3 m (měřeno od úrovně terénu). Stejné hodnoty platí i pro zařízení, které jsou součástí těchto vedení.

• **Ochranné pásmo DP Metro**
 Ochranné pásmo DP Metro má šířku 20 m od nejbližšího místa zařízení (stavby) metra. U traťových tunelů je ochranné pásmo metra tvořeno svislými plochami vedenými ve vzdálenosti 35 m vně osy krajní kolejky.

• **Ochranné pásmo železnice**
 Ochranné pásmo železnice je stanoveno zákonem 266/1994 Sb. ve znění pozdějších předpisů. Ochranné pásmo železnice tvoří prostor po obou stranách dráhy, jehož hranice jsou vymezeny svislou plochu vedenou u dráhy celostátní a u dráhy regionální 60 m od osy krajní kolejky, nejméně však ve vzdálenosti 30 m od hranic obvodu dráhy; u vlečky je 30 m od osy krajní kolejky. Toto ochranné pásma neovlivňuje běžné využívání pozemků mimo realizace nových objektů.

• **Silniční ochranné pásmo**
 Silniční ochranné pásmo stanoví zákon číslo 13/1997 Sb., ve znění pozdějších předpisů. Mimo souvislé zastavěná území se jim rozumí prostor ohraničený svislými plochami vedenými do výšky 50 m a ve vzdálenosti:

 a) 100 m od osy přilehlého jízdního pásu dálnice, rychlostní silnice nebo rychlostní komunikace anebo od osy většších komunikací,
 b) 50 m od osy vozovky nebo přilehlého jízdního pásu ostatních silnic I. třídy a ostatních místních komunikací I. třídy,
 c) 15 m od osy vozovky nebo osy přilehlého jízdního pásu silnice II. nebo III. třídy a místní komunikace II. třídy.

 Místní komunikace III. třídy, místní komunikace IV. třídy a účelové komunikace silniční ochranné pásmo nemají. V zastavěném území obce se silniční ochranné pásmo nesleduje.

Předmětem hodnocení podle zákona číslo 100/2001 Sb., o posuzování vlivů na životní prostředí, ve znění pozdějších předpisů, nejsou ochranná pásma inženýrských sítí a staveb.
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

V ochranném pásmu inženýrských sítí a staveb je možno provádět stavební činnost jen se souhlasem provozovatele, případně správce chráněného zařízení nebo objektu.

Všechny zásahy hodnoceného záměru do ochranných pásem budou řádně vypořádány v souladu s platnými předpisy v dalších stupních projektové přípravy záměru a jejich splnění bude podmínkou pro vydání příslušných rozhodnutí (územní rozhodnutí, stavební povolení). Stávající zařízení budou vytyčena a stanovená ochranná pásma budou respektována jak v projektové dokumentaci, tak na staveništi.

B.III. Údaje o výstupech

B.III.1. Ovzduší

B.III.1.1. Emisní vyhodnocení období výstavby

V období výstavby bude dočasným zdrojem znečišťování ovzduší vlastní prostor staveniště, kde bude docházet k produkci znečišťujících látek z provozu stavebních strojů a při nakládání se sypkými materiály a ke vzniku sekundární prašnosti z pohybu stavebních mechanismů. Dalším zdrojem znečištění budou emise z provozu nákladních automobilů na staveništi a po komunikacích v okolí staveniště. Tyto zdroje mohou po časově omezenou dobu relativně významně působit na své nejbližší okolí.

Vliv stavby na kvalitu ovzduší v bezprostředním okolí staveniště se v průběhu stavebních prací, ale i během jednotlivých etap výstavby výrazně mění (přehled hlavních etap výstavby je uveden v následující tabulce). Z hlediska vlivů na ovzduší se jako nejvýznamnější fáze výstavby zpravidla uvažuje období zemních prací. V této fázi výstavby je obvykle produkováno nejvyšší množství emisí. V případě prachu (suspendovaných částic frakce PM10) je to zejména vlivem nakládání se zeminou, ale také zvýšeným provozem nákladních vozidel po odkryté ploše staveniště a po komunikacích v okolí staveniště. Tyto zdroje mohou po časově omezenou dobu relativně významně působit na své nejbližší okolí.

Stavební práce při realizaci varianty 1 záměru a při realizaci varianty 2 záměru se nebudou významněji lišit. Vzhledem k tomu, že zásady organizace výstavby (ZOV) použité jako podklad pro výpočet emisí z výstavby záměru reprezentují kvalifikovaný odhad (předpoklad) rozsahu, charakteru a trvání stavebních prací na daném stupni projektové přípravy záměru jsou niže uvedené popisy stavebních prací použitelné jak pro variantu 1, tak pro variantu 2 záměru.

Tabulka B10 Přehled hlavních etap výstavby

<table>
<thead>
<tr>
<th>Pořadí etapy</th>
<th>Náplň etapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Přípravné práce</td>
</tr>
<tr>
<td>2.</td>
<td>Spodní stavba – zemní práce, založení objektů, vrtání pilot postupně pod východním objektem, následně pod západním objektem, zabezpečovací práce</td>
</tr>
<tr>
<td>3.</td>
<td>Montáž železobetonové skeletové prefabrikované nosné konstrukce – východní objekt</td>
</tr>
<tr>
<td>4.</td>
<td>Montáž železobetonové skeletové prefabrikované nosné konstrukce – západní objekt</td>
</tr>
</tbody>
</table>
Nejvýznamněji bude kvalitu ovzduší ovlivňovat stavební činnost během realizace spodní stavby (2. etapy výstavby záměru). Bude se jednat o etapu s nejvyšším nasazením mechanismů na ploše staveniště (zejména nejvyšší zatížení prašností) a s nejvyšším nasazením nákladních automobilů (nejvyšší ovlivnění podél odjezdových a příjezdových tras).

Předpokládané počty a doby nasazení stavebních strojů při realizaci spodní stavby uvádí následující tabulka. V důsledku zpřesnění zásad organizace výstavby (ZOV) byl v rozptylové studii zpracované pro variantu 1 záměru uvažován nižší počet strojní techniky nasazené v průběhu druhé etapy výstavby než v rozptylové studii pro variantu 2 záměru).

Tabulka B11 Seznam strojní techniky nasazené v průběhu druhé etapy výstavby

<table>
<thead>
<tr>
<th>Název stroje, typ</th>
<th>Počet za den</th>
<th>Var. 1</th>
<th>Var. 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rypadlo</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nakladač</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vrtná souprava pro piloty</td>
<td></td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Domíchávač betonu</td>
<td></td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Čerpadlo betonu</td>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nákladní automobily – počet vozů za den (odjezdů/příjezdů)</td>
<td></td>
<td>20/20</td>
<td>20/20</td>
</tr>
</tbody>
</table>

V souvislosti se zpracováním varianty 2 záměru byly pro tuto variantu zpřesněny doby nasazení stavební technizace. Ve výpočtech emisí do ovzduší při výstavbě varianty 1 záměru je uvažováno s nasazením uvedených strojů po dobu 10 hodin denně a nejvyšší předpokládaná intenzita staveništní dopravy během nejzatíženější hodiny je uvažována 6 nákladních vozidel (to znamená 12 jednosměrných jízd za hodinu), a to při souběhu prací. Ve výpočtech emisí do ovzduší při výstavbě varianty 2 záměru je uvažováno s nasazením strojů uvedených v tabulce po dobu 6 hodin denně a staveništní doprava je uvažována v počtu 4 nákladních vozidel (8 jízd) za hodinu během betonáže.

Plán organizace a postupu výstavby však bude dále upřesňován a kompletně bude zpracován až po výběru dodavatele stavby. Uvažovaná sestava tak představuje pouze jednu z pravděpodobných variant nasazení strojní mechanizace.

Na základě výše uvedených vstupních dat byly vypočteny emise z prostoru staveniště a ze staveništní dopravy na navazujících komunikacích v průběhu výstavby jak pro variantu 1 záměru, tak variantu 2 záměru. Vypočtená množství emisí znečišťujících látek do ovzduší produkovaných během hodnocené etapy výstavby záměru jsou uvedena v následující tabulce.

Tabulka B12 Emise z hodnocené fáze stavebních prací (kg/den\(^{-1}\))

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Hodnota parametru v kg/den(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Částice PM(_{10})^*</td>
</tr>
<tr>
<td></td>
<td>Var. 1</td>
</tr>
<tr>
<td>Stavební stroje</td>
<td>0,51</td>
</tr>
<tr>
<td>Staveništní komunikace a prašnost z nakládání se zeminou</td>
<td>3,76</td>
</tr>
<tr>
<td>Staveniště celkem</td>
<td>4,3</td>
</tr>
<tr>
<td>Doprava podél ulice Archeologická(**) (emise na 1 km)</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Poznámky:
Var. 1 = varianta 1 záměru, Var. 2 = varianta 2 záměru
*) včetně sekundární prašnosti
**) emise v průběhu betonáži, fáze s nejvyšším objemem staveništní dopravy

Z výše uvedené tabulky je patrné, že největší množství suspendovaných částic frakce PM\(_{10}\) vnášených do ovzduší během hodnocené emisně nejvýznamnější etapy stavby je možno očekávat z provozu nákladních vozidel po nezpevněné ploše staveniště a z nakládání se zeminou. Provoz nákladních vozidel po navazujících příjezdových / odjezdových komunikacích a provoz stavební techniky v prostoru staveniště bude mít na emise suspendovaných částic frakce PM\(_{10}\) menší vliv.

Hlavním zdrojem emisí oxidů dusíku a benzenu bude provoz stavebních strojů. Emise benzenu budou v průběhu výstavby velmi nízké, protože obsah této látky v naftě, a tedy i ve výfukových plyněch dieselových motorů, je v porovnání s benzinovými motory několikanásobně nižší.

B.III.1.2. Emisní vyhodnocení běžného provozu

Jednotlivé zdroje znečišťování ovzduší související s běžným provozem záměru je možno zařadit jako stacionární zdroje znečišťování ovzduší a jako mobilní zdroje znečišťování ovzduší. Za stacionární zdroje znečišťování ovzduší jsou v rámci záměru považovány výfuky dvou náhradních zdrojů elektrické energie (dieselagregátů). Mobilní zdroje znečišťování ovzduší související s provozem záměru bude představovat automobilová doprava na okolní komunikační síti vyvolaná jeho provozem.

Při stanovení emisí do ovzduší z automobilové dopravy se pro stav po uvedení záměru do provozu vycházelo zejména z údajů o předpokládaných intenzitách automobilové dopravy vyvolané v souvislosti s realizací záměru v prostoru hromadných garáží záměru a na komunikační síti v zájmovém území záměru a v jeho okolí.
Návrh záměru předpokládá provoz dvou dieselagregátů ve dvou režimech – v režimu pravidelných zkoušek a při havarijním provozu během výpadku elektrické energie. Emise z provozu dieselagregátů byly proto stanoveny na základě předpokládaného množství motorové nafty spotřebované během pravidelných zkoušek funkčnosti strojů a během případného havarijního provozu.

Skupeň zdrojů znečišťování ovzduší a sledované znečišťující látky

Pro emisní výpočty byly uvažovány emise z následujících skupin zdrojů znečišťování ovzduší, které budou uvedeny do provozu v souvislosti s realizací záměru:

- emise ze spalování motorové nafty v náhradních zdrojích elektrické energie,
- emise z provozu motorových vozidel v hromadných nadzemních garážích záměru a na okolní komunikační síti zájmového území.

S ohledem na stanovené imisní limity dle zákona o ochraně ovzduší a charakter posuzovaného záměru (emisní charakteristiky uvažovaných zdrojů) a s ohledem na výsledky analyzy stávající imisní zátěže na území hl. m. Prahy bylo v zájmovém území pro realizaci záměru vyhodnoceno emisní zatížení čtyřmi nejvýznamnějšími znečišťujícími látkami: oxidem dusičitým (NO₂), prachem (suspendovanými částicemi frakce PM₁₀ a suspendovanými částicemi frakce PM₂,₅), benzenem a benzo(a)pyrenem.

Emise z provozu náhradních zdrojů elektrické energie (dieselagregátů)

Předpokládá se, že potřeby náhradního zásobování elektrickou energií navrhovaných objektů záměru budou kryty dvěma náhradními zdroji elektrické energie (dieselagregát). Pro východní objekt je navržen stroj typu Caterpillar GEP 65 (65 kVA / 52 kW) a pro západní objekt je navržen stroj typu Caterpillar GEP 88-4 (88 kVA / 70 kW). Oba dieselagregáty budou mít samostatné komíny, které budou vyvedeny nad střechy navrhovaných objektů (výška komínů bude vždy 2 metry nad plochou střechou).

V modelových výpočtech byly pro uvedené náhradní zdroje elektrické energie uvažovány emisní faktory na úrovni Stage II v kategorii E podle Směrnice 2004/26/EC, která byla schválena Evropskou komisí, to znamená 6 g/kWh pro oxidy dusíku a 0,2 g/kWh pro suspendované částice frakce PM₁₀. Objem spalin byl uvažován ve výši 3 600 m³.hod⁻¹ při teplotě 430 °C. Za rok provozu záměru byly celkové emise znečišťujících látek z náhradních zdrojů elektrické energie (při uvažovaném provozním režimu) vyčleneny pro variantu 1 záměru i pro variantu 2 záměru na níže uvedené úrovni:

- oxidy dusíku – 2,8 kg.rok⁻¹ pro GEP 65 a 3,8 kg.rok⁻¹ pro GEP 88-4
- suspendované částice – 0,094 kg.rok⁻¹ pro GEP 65 a 0,13 kg.rok⁻¹ pro GEP 88-4.
V následující tabulce jsou uvedeny vypočtené roční emise znečišťujících látek do ovzduší (hmotové toky znečišťujících látek) z náhradních zdrojů elektrické energie navrhovaného záměru „Polyfunkční domy – Centrum Lužiny“.

Tabulka B13 Rekapitulace emisí znečišťujících látek (varianta 1 i varianta 2)

| Objekt | Zdroj | Emise znečišťujících látek (kg.rok)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NO_x</td>
</tr>
<tr>
<td>Západní objekt</td>
<td>Caterpillar GEP 88-4</td>
<td>3,8</td>
</tr>
<tr>
<td>Východní objekt</td>
<td>Caterpillar GEP 65</td>
<td>2,8</td>
</tr>
<tr>
<td>Celkem</td>
<td></td>
<td>6,6</td>
</tr>
</tbody>
</table>

Emise z automobilové dopravy

Pro výpočty emisí z automobilové dopravy na okolních komunikacích byly použity emisní faktory stanovené pomocí programu MF3A-06, který obsahuje emisní faktory publikované MŽP ČR. Tento program umožňuje výpočet univerzálních emisích faktorů (mg/km – g/km) pro všechny základní kategorie vozidel. Program zohledňuje zásadní parametry ovlivňující hodnotu emisních faktorů – rychlost jízdy, podélný sklon vozovky i stárnutí motorových vozidel.

Ve výpočtu byla zohledněna dynamická skladba vozového parku (podíl vozidel bez katalyzátoru a automobilů splňujících jednotlivé emisní limity) pro území hl. m. Prahy v zadaném výpočtovém roce. V případě hodnocení suspendovaných prachových částic frakce PM_{10} byly vedle sazí, emitovaných přímo spalovacími motory do ovzduší (takzvaná primární prašnost), zohledněny také emise částic zvířených projiždějícími automobily (takzvaná sekundární prašnost).

Množství pračky zvířeného automobilu bylo stanoveno výpočtem na základě metodiky dle studie „Návrh metodiky pro hodnocení primární a sekundární prašnosti ze silniční dopravy a návrhy opatření pro omezování imisní zátěže PM_{10} a $\text{PM}_{2,5}$ z automobilové dopravy“, kterou v roce 2010 zpracoval pro Ředitelství silnic a dálnic ČR Ateliér ekologických modelů (ATEM). Pro výpočet množství zvířených částic ze zpevněných komunikací se vychází z počtu projiždějících vozidel, jejich průměrné hmotnosti a uvažované průměrné rychlosti vozidel.

Při výpočtu produkce emisí z automobilové dopravy byl také uvažován vliv studených startů zparkovaných automobilů. Pro stanovení takzvaných víceemisí ze studených startů je používán výpočetní postup, který zohledňuje skutečnost, že vozidlo se studeným motorem produkuje větší množství emisí oproti optimálnímu režimu a navíc katalyzátory vozidel mají při nižší provozní teplotě sníženou účinnost.

Emise z dopravy na komunikační síti - stav bez výstavby záměru

V následující tabulce jsou uvedena množství emisí znečišťujících látek z automobilové dopravy na vybraných komunikačních úsecích a parkovacích plochách v zájmovém území záměru a v jeho okolí ve výchozím stavu (bez vlivu navrhovaných objektů záměru).
Tabulka B14 Emise znečišťujících látek z automobilové dopravy na komunikační síti zájmového území – stav bez záměru v roce 2018

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Délka (km)</th>
<th>Emise t.rok(^4)</th>
<th>Emise g.rok(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Částice PM(_{10})</td>
<td>Oxidy dusíku**</td>
</tr>
<tr>
<td>Jeremiášova</td>
<td>1,5</td>
<td>11,54</td>
<td>10,74</td>
</tr>
<tr>
<td>Mukařovského</td>
<td>0,7</td>
<td>3,45</td>
<td>1,91</td>
</tr>
<tr>
<td>Archeologická</td>
<td>0,8</td>
<td>1,45</td>
<td>1,02</td>
</tr>
<tr>
<td>Podpěřova</td>
<td>0,1</td>
<td>0,04</td>
<td>0,03</td>
</tr>
<tr>
<td>Brdičkova</td>
<td>0,3</td>
<td>0,07</td>
<td>0,06</td>
</tr>
<tr>
<td>Piškova</td>
<td>0,2</td>
<td>0,06</td>
<td>0,04</td>
</tr>
<tr>
<td>Parkovací plochy a napojovací komunikace stávajícího OC Lužiny</td>
<td>0,5</td>
<td>0,10</td>
<td>0,06</td>
</tr>
<tr>
<td>Celkem</td>
<td>4,1</td>
<td>16,7</td>
<td>13,9</td>
</tr>
</tbody>
</table>

* zahrnuje primární prašnost a sekundární prašnost z dopravy
** produkce NO\(_2\) představuje 4 – 10 % NO\(_x\)

Emise z dopravy na komunikační síti a v garážích – příspěvky záměru

Následující dvě tabulky uvádějí množství emisí znečišťujících látek emitovaných do ovzduší z automobilové dopravy vyvolané provozem záměru na komunikační síti zájmového území jednak pro variantu 1 záměru a jednak pro variantu 2 záměru. V bilanci emisí je zohledněn jak nárůst dopravní zátěže způsobený navrhovaným záměrem, tak redukce pohybu na stávajících parkovacích plochách obchodního centra, které budou převedeny do navrhovaných hromadných garáží. V případě výpočtu sekundární prašnosti byl zohledněn výchozí počet projíždějících vozidel na jednotlivých komunikacích.

Tabulka B15 Emise znečišťujících látek z automobilové dopravy - příspěvky z provozu záměru – komunikační síť, varianta 1 záměru

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Emise (kg,roku(^{-1}))</th>
<th>Emise (g,roku(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Délka (km)</td>
<td>Částice PM(_{10})</td>
</tr>
<tr>
<td>Jeremiášova</td>
<td>1,5</td>
<td>54,0</td>
</tr>
<tr>
<td>Mukařovského</td>
<td>0,7</td>
<td>32,0</td>
</tr>
<tr>
<td>Archeologická</td>
<td>0,8</td>
<td>76,4</td>
</tr>
<tr>
<td>Podpěřova</td>
<td>0,1</td>
<td>5,3</td>
</tr>
<tr>
<td>Brdičkova</td>
<td>0,3</td>
<td>17,5</td>
</tr>
<tr>
<td>Piškova</td>
<td>0,2</td>
<td>2,8</td>
</tr>
<tr>
<td>Parkovací plochy a napojovací komunikace stávajícího OC Lužiny a navrhovaného záměru</td>
<td>0,5</td>
<td>12,8</td>
</tr>
<tr>
<td>Celkem</td>
<td>4,1</td>
<td>200,8</td>
</tr>
</tbody>
</table>

* zahrnuje primární prašnost a sekundární prašnost z dopravy
** produkce NO\(_2\) představuje 4 – 10 % NO\(_x\)
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Tabulka B16 Emise znečišťujících látek z automobilové dopravy - příspěvky z provozu záměru – komunikační síť, varianta 2 záměru

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Emise (kg.rok⁻¹)</th>
<th>Emise (g.rok⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeremiášova</td>
<td>1,5 54,50</td>
<td>73,05</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>3,75</td>
</tr>
<tr>
<td>Mukařovského</td>
<td>0,7 32,80</td>
<td>36,71</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>12,97</td>
</tr>
<tr>
<td>Archeologická</td>
<td>0,8 75,91</td>
<td>55,53</td>
</tr>
<tr>
<td></td>
<td>0,1</td>
<td>3,75</td>
</tr>
<tr>
<td>Podpěřova</td>
<td>0,1 5,24</td>
<td>1,41</td>
</tr>
<tr>
<td>Brdičkova</td>
<td>0,3 17,50</td>
<td>4,71</td>
</tr>
<tr>
<td>Piškova</td>
<td>0,2 4,20</td>
<td>1,11</td>
</tr>
<tr>
<td>Parkovací plochy a napojovací komunikace stávajícího OC Lužiny a navrhovaného záměru</td>
<td>0,5 11,74</td>
<td>7,65</td>
</tr>
<tr>
<td>Celkem</td>
<td>4,1 201,9</td>
<td>192,3</td>
</tr>
</tbody>
</table>

* zahrnuje primární prašnost a sekundární prašnost z dopravy
** produkce NO₂ představuje 4 – 10 % NOₓ

Vzhledem k tomu, že očekávané intenzity automobilové dopravy vyvolané provozem varianty 1 záměru v roce 2018 by se mohly lišit od intenzit dopravy vyvolané provozem stejné varianty záměru v roce 2015 jen zcela nevýznamně a protože lze očekávat mírné zlepšování emisních parametrů automobilů v čase, je možno pro hodnocení vlivů varianty 1 záměru na kvalitu ovzduší použít příspěvky emisí znečišťujících látek z provozu automobilové dopravy záměru vypočtené pro rok 2015. Níže uvedená tabulka ukazuje pro variantu 1 záměru výsledky výpočtů emisních bilancí pro parkovací a manipulační plochy v blízkosti OC Lužiny a napojovacích ramp navrhovaného záměru pro stav před zprovozněním navrhovaného záměru a po jeho zprovoznění. Další tabulka prezentuje stejnou bilanci pro variantu 2 záměru. Bilance zohledňují jak nárůst dopravní zátěže způsobený navrhovaným záměrem, tak redukci pohybu na stávajících plochách v blízkosti OC Lužiny jejich převedením do navrhovaných hromadných patrových garáží v objektech záměru.

Tabulka B17 Emise z automobilové dopravy na parkovacích a manipulačních plochách v blízkosti OC Lužiny – stav před a po zprovoznění záměru – varianta 1

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Emise (kg.rok⁻¹)</th>
<th>Emise (g.rok⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Před zprovoznění záměru</td>
<td>0,47 97,2</td>
<td>63,5</td>
</tr>
<tr>
<td>Po zprovoznění záměru</td>
<td>0,44 90,8</td>
<td>63,0</td>
</tr>
<tr>
<td>Změna</td>
<td>– -6,4</td>
<td>-0,5</td>
</tr>
</tbody>
</table>

Poznámky:
Změna: - pokles v důsledku realizace záměru, + nárůst v důsledku realizace záměru
* zahrnuje primární prašnost a sekundární prašnost z dopravy
** produkce NO₂ představuje 4 – 10 % NOₓ
Tabulka B18 Emise z automobilové dopravy na parkovacích a manipulačních plochách v blízkosti OC Lužiny – stav před a po zprovoznění záměru – varianta 2

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Emise (kg.rok⁻¹)</th>
<th>(g.rok⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Délka (km)</td>
<td>Částice PM₁₀*</td>
</tr>
<tr>
<td>Před zprovoznění záměru</td>
<td>0,43</td>
<td>96,6</td>
</tr>
<tr>
<td>Po zprovoznění záměru</td>
<td>0,41</td>
<td>94,5</td>
</tr>
<tr>
<td>Změna</td>
<td>–</td>
<td>-2,1</td>
</tr>
</tbody>
</table>

Poznámky:

Změna: - pokles v důsledku realizace záměru, + nárůst v důsledku realizace záměru
* zahrnuje primární a sekundární prašnost, v případě garáží je sekundární prašnost z dopravy redukována
** produkce NO₂ představuje 4 – 10 % NOₓ

Emisní bilance z prostoru nadzemních vícepodlažních garáží záměru uvádějí jak pro variantu 1 záměru, tak pro variantu 2 záměru následující tabulky. Odvětrání emisí z vícepodlažních nadzemních garáží bude zajistěno volně perforovanými fasádami do volných prostor po obvodu navrhovaných garáží. Odvětrání emisí volně perforovanými fasádami je zohledněno v modelových výpočtech. Emise z hromadných garáží v objektech záměru budou oproti běžnému řešení hromadných garáží omezeny, protože vozidla nebudou v garážích pojiždět mezi jednotlivými patry po rampách.

Díky konfiguraci terénu v okolí západního objektu záměru (objekt Alfa) budou jednotlivé nadzemní podlaží (1. NP až 4. NP) v garážích tohoto objektu dostupné pro automobily přímo z okolního terénu bez nutnosti přejíždět mezi patry po rampách. Ve variantě 1 záměru budou výjimkou pouze parkovací stání v 5. NP objektu Alfa, na která se automobily dostanou výtahem ze 4. NP. Všechna parkovací stání ve 2. NP až 5. NP v garážích východního objektu (objekt Beta) budou obsluhována výlučně výtahy z 1. nadzemního podlaží.

Tabulka B19 Emise znečišťujících látek z provozu automobilů v garážích (přispěvky emisí v důsledku realizace záměru) – varianta 1

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Emise (kg.rok⁻¹)</th>
<th>(g.rok⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Částice PM₁₀*</td>
<td>Oxidy dusíku **</td>
</tr>
<tr>
<td>Náhrada za zabraná povrchová parkoviště dvorů OC Lužiny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Náhrada za zabrané západní plochy</td>
<td>6,3</td>
<td>19,7</td>
</tr>
<tr>
<td>Náhrada za zabrané východní plochy</td>
<td>0,7</td>
<td>1,4</td>
</tr>
<tr>
<td>Doprava generovaná záměrem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parkovací stání pro západní objekt</td>
<td>3,3</td>
<td>11,0</td>
</tr>
<tr>
<td>Parkovací stání pro východní objekt</td>
<td>0,7</td>
<td>2,3</td>
</tr>
<tr>
<td>Celkem</td>
<td>11,0</td>
<td>34,4</td>
</tr>
</tbody>
</table>

* zahrnuje primární a sekundární prašnost, v případě garáží je sekundární prašnost z dopravy redukována
** produkce NO₂ představuje 4 – 10 % NOₓ
Tabulka B20 Emise znečišťujících látek z provozu automobilů v garážích objektů a na parkovací ploše na střeše objektu ALFA (příspěvky emisí v důsledku realizace záměru) – varianta 2

<table>
<thead>
<tr>
<th>Komunikace</th>
<th>Částice PM$_{10}$*</th>
<th>Oxidy dusíku**</th>
<th>Částice PM$_{2,5}$*</th>
<th>Benzen</th>
<th>B(a)P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Náhrada za zabraná povrchová parkoviště dvorů OC Lužiny</td>
<td>4,8</td>
<td>13,3</td>
<td>1,55</td>
<td>1,3</td>
<td>0,16</td>
</tr>
<tr>
<td>Náhrada za zabrané západní plochy</td>
<td>0,7</td>
<td>1,5</td>
<td>0,26</td>
<td>0,1</td>
<td>0,02</td>
</tr>
<tr>
<td>Doprava generovaná záměrem</td>
<td>4,7</td>
<td>7,1</td>
<td>1,31</td>
<td>0,8</td>
<td>0,13</td>
</tr>
<tr>
<td>Parkovací stání pro západní objekt</td>
<td>0,9</td>
<td>2,8</td>
<td>0,28</td>
<td>0,3</td>
<td>0,03</td>
</tr>
<tr>
<td>Parkovací stání pro východní objekt</td>
<td>11,1</td>
<td>24,7</td>
<td>3,4</td>
<td>2,5</td>
<td>0,3</td>
</tr>
<tr>
<td>Celkem</td>
<td>20</td>
<td>44,9</td>
<td>3,8</td>
<td>2,5</td>
<td>0,3</td>
</tr>
</tbody>
</table>

* zahrnuje primární a sekundární prašnost, v případě garáží je sekundární prašnost z dopravy redukována
** produkce NO$_2$ představuje 4 – 10 % NO$_x$

B.III.2. Odpadní vody

Tato kapitola nezahrnuje dešťové vody za běžného provozu, které nejsou pro účely tohoto posouzení považovány za odpadní vody. O dešťových vodách je pojednáno níže, v kapitole dokumentace „B.III.3. Dešťové vody za provozu“.

B.III.2.1. Druhy vznikajících odpadních vod

Odpadní vody v průběhu výstavby

V období výstavby budou na staveništi vznikat předešvěm splaškové odpadní vody ze sociálního zařízení staveniště (šatny, umývárny, WC, kuchyňky). Předpokládá se, že voda použitá na staveništi pro technologické účely (předešvěm voda na ošetřování betonu a kropení) se odpaří a nebude proto zdrojem odpadních vod. Vzhledem k tomu, že objekty nebudou mít podzemní podlaží, ne předpokládají se odpadní vody ze stavebních jam.

Odpadní vody za provozu

B.III.2.2. Množství odpadních vod

Odpadní vody v průběhu výstavby

Množství splaškových odpadních vod vyprodukovaných během výstavby záměru bude značně proměnlivé v závislosti na počtu zaměstnanců na staveništi a druhu stavebních prací. Množství splaškových odpadních vod v období výstavby nebylo ve stávající fázi projektové přípravy stanoveno. Ve srovnání s běžnou produkční splaškových odpadních vod z budoucích objektů záměru bude množství splaškových odpadních vod produkovaných během stavby zanedbatelné. Množství odpadních vod ze stavebních jam nebylo na daném stupni přípravy projektové dokumentace záměru řešeno (odpadní vody ze stavebních jam nejsou uvažovány).

Odpadní vody za provozu

Množství vypouštěných splaškových odpadních vod z objektů záměru „Polyfunkční domy – Centrum Lužiny“ bude odpovídat potřebě pitné vody (viz Tabulka B4 Výpočtová bilance potřeby pitné vody v kapitole B.II.2. Voda), případně snížené o množství pitné vody použité na zalévání zeleně.

Podle výpočtů potřeby pitné vody, provedených na základě uvažovaných funkcí v objektech záměru a předpokládaného počtu ekvivalentních obyvatel záměru, bude průměrné roční množství splaškových odpadních vod odváděných z lokality činit v případě varianty 1 záměru nejvýše 26 240 m³ a v případě varianty 2 záměru nejvýše 22 146 m³.

Kvalita splaškových odpadních vod z objektů záměru bude srovnatelná s kvalitou odpadních vod z obdobných obytných polyfunkčních záměrů a bude splňovat kritéria kanalizačního řádu. Obvyklé průměrné složení splaškových odpadních vod je zřejmé z následující tabulky. Údaje uvedené v tabulce je však třeba považovat pouze za informativní. Dle některých pozorování mohou být hodnoty ukazatelů splaškových odpadních vod z nové obytné zástavby na horní hranici uváděných hodnot nebo dokonce i vyšší.

Tabulka B21 Obvyklé průměrné složení splaškových vod

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Rozměr</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>7,2 - 7,8</td>
</tr>
<tr>
<td>Sediment po 60 minutách</td>
<td>ml/l</td>
<td>3,0 - 4,5</td>
</tr>
<tr>
<td>Nerozpuštěné látky</td>
<td>mg/l</td>
<td>300 - 700</td>
</tr>
<tr>
<td>- usaditelné</td>
<td>%</td>
<td>67</td>
</tr>
<tr>
<td>- neusaditelné</td>
<td>%</td>
<td>33</td>
</tr>
<tr>
<td>Rozpuštěné látky</td>
<td>mg/l</td>
<td>600 - 800</td>
</tr>
<tr>
<td>BSK₅</td>
<td>mg/l</td>
<td>100 - 400</td>
</tr>
<tr>
<td>CHSK₅₃₄,₅</td>
<td>mg/l</td>
<td>100 - 800</td>
</tr>
<tr>
<td>Ionty NH₄⁺</td>
<td>mg/l</td>
<td>20 - 42</td>
</tr>
</tbody>
</table>
B.III.2.3. Množství vypouštěného znečištění

Množství znečištění vypouštěného z objektů záměru stanoveno na základě množství splaškových odpadních vod vypouštěných z bytových jednotek (varianta 1 záměru nejvýše 26 240 m³/rok, varianta 2 záměru nejvýše 22 146 m³) a jejich průměrné kvality se zřetelem na to, že při vypouštění odpadních vod budou splněny podmínky kanalizačního řádu. V následující tabulce je pro obě varianty záměru uveden jak přehled použitých průměrných hodnot kvalitativních ukazatelů ve vypouštěných splaškových odpadních vodách, tak odpovídající vypočtený celkový hmotový tok znečištění za rok.

Tabulka B22 Průměrné koncentrace a bilance ukazatelů v odpadních vodách

<table>
<thead>
<tr>
<th>Ukazatel</th>
<th>Průměrná hodnota ukazatele</th>
<th>Celkový objem vypouštěných látek</th>
<th>Varianta 1</th>
<th>Varianta 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7,5</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BSK₅</td>
<td>250 mg.l⁻¹</td>
<td>6,56 t.rok⁻¹</td>
<td>5,54 t.rok⁻¹</td>
<td>---</td>
</tr>
<tr>
<td>CHSK₅₉₀₀</td>
<td>300 mg.l⁻¹</td>
<td>7,87 t.rok⁻¹</td>
<td>6,63 t.rok⁻¹</td>
<td>---</td>
</tr>
<tr>
<td>Nerozpuštěné látky</td>
<td>600 mg.l⁻¹</td>
<td>15,74 t.rok⁻¹</td>
<td>13,29 t.rok⁻¹</td>
<td>---</td>
</tr>
<tr>
<td>Rozpuštěné látky</td>
<td>700 mg.l⁻¹</td>
<td>18,37 t.rok⁻¹</td>
<td>15,50 t.rok⁻¹</td>
<td>---</td>
</tr>
<tr>
<td>Amonný ion</td>
<td>30 mg.l⁻¹</td>
<td>0,79 t.rok⁻¹</td>
<td>0,66 t.rok⁻¹</td>
<td>---</td>
</tr>
</tbody>
</table>

Výpočet bilance vypouštěného znečištění ve splaškových odpadních vodách provedený pro průměrné hodnoty běžného znečištění splaškových odpadních je třeba považovat za orientační, protože, jak již bylo uvedeno výše, hodnoty ukazatelů znečištění splaškových odpadních vod z nové obytné zástavby mohou být na horní hranici uváděných hodnot a někdy i vyšší.

B.III.2.4. Čištění a předčištění odpadních vod

Odpadní vody v průběhu výstavby

V období výstavby budou na staveništi vznikat především splaškové odpadní vody ze sociálního zařízení staveniště (šatny, umývárny, WC), které budou bez předčištění vypouštěny do veřejné kanalizace. Vzhledem k tomu, že objekty záměru nebudou mít podzemní podlaží, nejsou v dané fázi projektové přípravy stavby uvažovány odpadní vody ze stavebních jamb.

Odpadní vody za provozu

Odpadní vody z objektu záměru budou mít převážně charakter splaškových odpadních vod. Veškeré vypouštěné odpadní vody budou plnit limity stanovené kanalizačním řádem hlavního města Prahy. S ohledem na charakter splaškových odpadních vod a přímé napojení záměru na veřejný (městský) kanalizační systém není uvažována vlastní čistírna odpadních vod.
B.III.2.5. Charakter recipientu

B.III.3. Dešťové vody za provozu

Dešťové vody mají původ v atmosférických srážkách ať již dešťových nebo sněhových. Celkový okamžitý odtok dešťových vod zachycených v posuzovaném areálu do dešťové kanalizace byl vypočet projektantem pro návrhový dešť oddílné kanalizace o intenzitě 0,3 l.s^{-1}.m^{-2} a periodicitě 1,0 dle následujícího vzorce:

\[Q = \psi \cdot F \cdot S \]

kde je:
- \(Q \) - množství dešťových vod [l.s^{-1}]
- \(\psi \) - součinitel odtoku
- \(\psi_1 \) - součinitel odtoku střechy = 0,5
- \(\psi_2 \) - součinitel odtoku upraveného terénu = 0,8
- \(F \) - plocha povodí zachycených dešťových vod [ha]
- \(S \) - intenzita srážek návrhového deště [l.s^{-1}.ha^{-1}]

V následující tabulce jsou uvedeny vypočtené hodnoty budoucího povrchového odtoku dešťových vod z ploch napojených na kanalizaci v litrech za sekundu. Maximální okamžitý odtok dešťových vod z území záměru vypočtený pro návrhový dešť pražské kanalizace byl stanoven na přibližně 46,4 l/s. Protože plochy, ze kterých budou dešťové vody odváděny do dešťové kanalizace, jsou pro variantu 1 i pro variantu 2 záměru stejné, jsou výpočtové hodnoty okamžitého odtoku dešťových vod z území záměru pro obě varianty záměru stejné.

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Západní objekt</th>
<th>Východní objekt</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Okamžitý odtok dešťových vod</td>
<td>32,3 l/sec</td>
<td>14,1 l/sec</td>
<td>46,4 l/sec</td>
</tr>
</tbody>
</table>

V souvislosti s realizací záměru se nepředpokládá žádná hodnotitelná změna výpočtového odtoku dešťových vod z území záměru, protože v současném stavu je prakticky celé zájmové území zastaveno zpevněnými plochami parkovišť a manipulačních ploch OC Lužiny a v nově navrženém stavu bude celé území zastaveno objekty záměru. Dešťové vody budou po realizaci záměru, stejně jako v současném stavu, odváděny do kanalizace.

Dešťové vody ze střech záměru nebudou znečištěny a budou vypouštěny přímo do oddílné dešťové kanalizace záměru a následně do oddílné veřejné kanalizace v zájmovém území záměru. Dešťové vody z ostatních zpevněných ploch (chodníky, vozovky a podobně) budou buď vsakovány přímo do terénu, nebo odváděny do kanalizace. Ani u těchto vod se však nepředpokládá významnější kontaminace. Aby nemohlo dojít k úniku ropných látek do kanalizace, budou garáže řešeny jako bezodtoké prostory a nebudou napojeny na kanalizaci.
Vlastník kanalizace je povinen před podáním návrhu na kolaudaci stavby kanalizace zajistit zpracování kanalizačního řádu, který stanoví nejvyšší přípustnou míru znečištění odpadních vod vypouštěných do kanalizace, popřípadě nejvyšší přípustné množství těchto vod a další podmínky jejího provozu dle § 14 zákona číslo 274/2001 Sb., o vodovodech a kanalizacích, ve znění pozdějších předpisů.

Charakter recipientu

B.III.4. Odpady

Odpady související s realizací a provozem záměru jsou pro účely tohoto posouzení rozděleny na odpady, které budou vznikat při jeho výstavbě a na odpady, které budou vznikat za běžného provozu záměru. Druhová skladba odpadů a jejich produkovaná množství byla stanovena, tam kde to bylo možné a účelné, na základě zkušeností investora, projektanta stavby a zpracovatele dokumentace a dostupných údajů o provádění stavby a o produkci odpadů z obdobných obytných a polyfunkčních objektů. S odpadem vzniklým při stavebních pracích i za běžného provozu záměru bude nakládáno v souladu se zákonem č. 185/2001 Sb., o odpadech a o změně některých dalších zákonů, ve znění pozdějších předpisů, a také v souladu s relevantními obecně závaznými vyhláškami hlavního města Prahy.

B.III.4.1. Druhy odpadu

Odpady vznikající při stavbě

V průběhu přípravy území pro výstavbu záměru budou vznikat především stavební suši z demolice stávajících zpevněných ploch v zájmovém území a výkopové zeminy (výkopek) z míst základů budoucích objektů záměru “Polyfunkční domy – Centrum Lužiny“.

Převážná část stavební suši bude tvořena obvyklými demoličními odpady charakteru ostatního odpadu. Při demolici však mohou vzniknout i odpady obsahující nebezpečné látky (například materiály kontaminované ropnými látkami a podobně). I v případě nebezpečných odpadů se však bude jednat o běžné stavební odpady. S demoličními odpady bude nakládáno podle jejich kategorií a druhů, a proto budou tříděny a pokud možno využity (například recyklace betonu, kovů, atd.) nebo bezpečně odstraněny.

Kontaminace výkopové zeminy se nepředpokládá, a proto bude možno nakládat s touto zemínou jako s ostatním odpadem. Vytěžená zemina bude nabídnuta k využití, nevyužitelná zemina bude odvezena na vhodnou deponii nebo skládku. Pokud by byla v průběhu zemních prací zjištěna kontaminace zeminy, bude s touto zeminou nakládáno jako s nebezpečným odpadem. Před odstraněním kontaminované zeminy by byly provedeny chemické analýzy vzorků a s odpadem by se nakládalo podle výsledků těchto analýz (biodegradace, uložení na příslušnou skládku nebo spálení ve spalovně nebezpečného odpadu).
Během výstavby záměru se předpokládá především produkce ostatního odpadu, jako jsou odpady dřeva (bednění, pažení), cihly, beton, keramické výrobky nebo směsi těchto stavebních materiálů. Odpad tohoto typu by měl být vytříděn a měl by být přednostně znovu využit nebo recyklován. V případě že to není možné, by měl být energeticky využit a pouze nevyužitelné odpady by měly být spáleny bez energetického využití nebo uloženy na skládku.

V průběhu výstavby záměru mohou vznikat i nebezpečné odpady. Bude se jednat o obvykle nebezpečné odpady ze stavby, jako jsou zbytky organických rozpouštědel a ředidel, zbytky barev, obaly obsahující zbytky nebezpečných látek, čistící tkaniny a zbytky izolačních a stavebních materiálů obsahujících nebezpečné látky. V souvislosti s provozem stavební mechanizace mohou vzniknout také odpadní oleje a mazadla.

Nebezpečné odpady budou na staveništi tříděny a shromažďovány ve shromažďovacích prostředcích, které budou vyhovovat požadavkům § 5 vyhlášky MŽP číslo 383/2001 Sb., o podrobných zásadách nakládání s odpady, ve znění pozdějších předpisů. Nebezpečné odpady budou skladovány odděleně tak, aby bylo zabráněno jejich úniku do okolí nebo neoprávněné manipulaci.

Rovněž pro nebezpečné odpady je přednostně požadováno jejich využití (například recyklace odpadních olejů, recyklace živinických povrchů, atd.), případně jejich energetické využití ve spalovně nebezpečných odpadů, před spalováním bez energetického využití nebo skládkováním na skládce nebezpečných odpadů. Zásadním požadavkem pro tyto druhy odpadů je, že nesmí vstupovat do komunálního odpadu.

Odpady budou předávány specializované firmě - oprávněné osobě dle zákona číslo 185/2001 Sb., o odpadech, ve znění pozdějších předpisů. O nakládání s odpady vznikajícími během stavby a o způsobu jejich odstranění bude vedena evidence v provozní dokumentaci stavby.

Hlavní druhy odpadů, které by mohly vzniknout během výstavby záměru, jsou uvedeny v následující tabulce. Výčet odpadů není konečný, protože v průběhu demoliciích, zemních a stavebních prací nelze vyloučit vznik odpadů, které v této tabulce nejsou uvedeny. Stejně tak nelze vyloučit, že některé odpady uvedené v tabulce během stavby nevzniknou.

Tabulka B24 Přehled odpadů produkovaných v etapě výstavby

<table>
<thead>
<tr>
<th>Název druhu odpadu</th>
<th>Katalogové číslo</th>
<th>Kategorie odpadu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odpadní barvy a laky obsahující organická rozpouštědla nebo jiné nebezpečné látky</td>
<td>08 01 11</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Jiné odpadní barvy a laky neuváděné pod číslem 08 01 11</td>
<td>08 01 12</td>
<td>ostatní</td>
</tr>
<tr>
<td>Odpadní lepidla a těsnící materiály obsahující organická rozpouštědla nebo jiné nebezpečné látky</td>
<td>08 04 09</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Jiná odpadní lepidla a těsnící materiály neuváděné pod číslem 08 04 09</td>
<td>08 04 10</td>
<td>ostatní</td>
</tr>
</tbody>
</table>

Prosinec 2014
Číslo úkolu: 2014-S-06
<table>
<thead>
<tr>
<th>Název druhu odpadu</th>
<th>Katalogové číslo</th>
<th>Kategorie odpadu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odpadní hydraulické oleje</td>
<td>13 01 XX¹</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Odpadní motorové, převodové a mažací oleje</td>
<td>13 02 XX</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Jiná rozpoústědla a směsí rozpouštědla</td>
<td>14 06 03</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Papírové a lepenkové obaly</td>
<td>15 01 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Plastové obaly</td>
<td>15 01 02</td>
<td>ostatní</td>
</tr>
<tr>
<td>Kovové obaly</td>
<td>15 01 04</td>
<td>ostatní</td>
</tr>
<tr>
<td>Směsné obaly</td>
<td>15 01 06</td>
<td>ostatní</td>
</tr>
<tr>
<td>Obaly obsahující zbytky nebezpečných látek nebo obaly těmito látkami znečištěné</td>
<td>15 01 10</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Absorpční činidla, filtrační materiály (včetně olejových filtrů jinak bliže neurčených), čistící a ochranné oděvy znečištěné nebezpečnými látkami</td>
<td>15 02 02</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Absorpční činidla, filtrační materiály, čistící a ochranné oděvy neuvedené pod číslem 15 02 02</td>
<td>15 02 03</td>
<td>ostatní</td>
</tr>
<tr>
<td>Beton</td>
<td>17 01 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Cihly</td>
<td>17 01 02</td>
<td>ostatní</td>
</tr>
<tr>
<td>Tašky a keramické výrobky</td>
<td>17 01 03</td>
<td>ostatní</td>
</tr>
<tr>
<td>Směsi nebo oddělené frakce betonu, cihel, tašek a keramických výrobků obsahující nebezpečné látky</td>
<td>17 01 06</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Směsi nebo oddělené frakce betonu, cihel, tašek a keramických výrobků neuvedené pod č. 17 01 06</td>
<td>17 01 07</td>
<td>ostatní</td>
</tr>
<tr>
<td>Dřevo</td>
<td>17 02 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Sklo</td>
<td>17 02 02</td>
<td>ostatní</td>
</tr>
<tr>
<td>Plasty</td>
<td>17 02 03</td>
<td>ostatní</td>
</tr>
<tr>
<td>Sklo, plasty a dřevo obsahující nebezpečné látky nebo nebezpečnými látkami znečištěné</td>
<td>17 02 04</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Asfaltové směsi neuvedené pod číslem 17 03 01</td>
<td>17 03 02</td>
<td>ostatní</td>
</tr>
<tr>
<td>Železo a ocel</td>
<td>17 04 05</td>
<td>ostatní</td>
</tr>
<tr>
<td>Směsné kovy</td>
<td>17 04 07</td>
<td>ostatní</td>
</tr>
<tr>
<td>Kovový odpad znečištěný nebezpečnými látkami</td>
<td>17 04 09</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Kabely neuvedené pod číslem 17 04 10</td>
<td>17 04 11</td>
<td>ostatní</td>
</tr>
<tr>
<td>Zemina a kameni obsahující nebezpečné látky</td>
<td>17 05 03</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Zemina a kameni neuvedené pod číslem 17 05 03</td>
<td>17 05 04</td>
<td>ostatní</td>
</tr>
<tr>
<td>Izolační materiály, které jsou nebo obsahují nebezpečné látky</td>
<td>17 06 03</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Izolační materiály neuvedené pod čísly 17 06 01 a 17 06 03</td>
<td>17 06 04</td>
<td>ostatní</td>
</tr>
<tr>
<td>Stavební materiály na bázi sádry znečištěných nebezpečnými látkami</td>
<td>17 08 01</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Stavební materiály na bázi sádry neuvedené pod číslem 17 08 01</td>
<td>17 08 02</td>
<td>ostatní</td>
</tr>
<tr>
<td>Jiné stavební a demoliční odpady (vč. směsných stavebních a demoličních) obsahujících nebezpečné látky</td>
<td>17 09 03</td>
<td>nebezpečný</td>
</tr>
</tbody>
</table>

¹ U podskupiny 13 01 a 13 02 není v současné době možné upřesnit druh produkovaného odpadu. Odpadní druhy spadající do těchto podskupin mají podobné vlastnosti, ve všech případech se jedná o odpady nebezpečné.
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Prosinec 2014
Číslo úkolu: 2014-S-06

Odpady vznikající za provozu

Za běžného provozu záměru „Polyfunkční domy – Centrum Lužiny” bude vznikat zejména běžný komunální odpad. V následující tabulce jsou přehledně uvedeny druhy odpadů, jejichž vznik se předpokládá za běžného provozu záměru.

Výčet odpadů v tabulce reprezentuje odpady, jejichž vznik se předpokládá na základě zkušeností, a proto nemůže být úplný ani definitivní. Nelze tedy vyloučit, že za běžného provozu objektu mohou vzniknout i odpady, které budou zařazeny pod jiná katalogová čísla, než jsou v tabulce uvedena. Stejně tak ale nemusí některé odpady uvedené v tabulce za běžného provozu vůbec vznikat.

Tabulka B25 Přehled odpadů produkovaných za běžného provozu

<table>
<thead>
<tr>
<th>Název druhu odpadu</th>
<th>Katalogové číslo</th>
<th>Kategorie odpadu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Směsné stavební a demoliční odpady neuvázené pod čísla 17 09 01, 17 09 02 a 17 09 03</td>
<td>17 09 04</td>
<td>ostatní</td>
</tr>
<tr>
<td>Papír a/nebo lepenka</td>
<td>20 01 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Baterie a akumulátory zařazené pod čísla 16 06 01, 16 06 02 nebo 16 06 03 a netříděné baterie</td>
<td>20 01 33</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Směsný komunální odpad</td>
<td>20 03 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Objevný odpad</td>
<td>20 03 07</td>
<td>ostatní</td>
</tr>
</tbody>
</table>

Směsné obaly	15 01 07	ostatní
Obaly obsahující zbytky nebezpečných látek nebo obaly těmito látkami znečištěné	15 01 10	nebezpečný
Železné kovy	16 01 17	ostatní
Neželezné kovy	16 01 18	ostatní
Odpady jinak bliže neurčené	16 01 99	ostatní
Výřazená zařízení obsahující nebezpečné složky neuvázená pod čísla 16 02 09 až 16 02 12	16 02 13	nebezpečný
Název druhu odpadu

<table>
<thead>
<tr>
<th>Název druhu odpadu</th>
<th>Katalogové číslo</th>
<th>Kategorie odpadu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vyřazená zařízení neuvědomená pod čísl 16 02 09 až 16 02 13</td>
<td>16 02 14</td>
<td>ostatní</td>
</tr>
<tr>
<td>Směsné stavební a demoliční odpady neuvědomené pod číly 17 09 01, 17 09 02 a 17 09 03 (pouze při provádění oprav a stavebních úprav)</td>
<td>17 09 04</td>
<td>ostatní</td>
</tr>
<tr>
<td>Papír a lepenka</td>
<td>20 01 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Sklo</td>
<td>20 01 02</td>
<td>ostatní</td>
</tr>
<tr>
<td>Biologicky rozložitelný odpad z kuchyní a stravoven</td>
<td>20 01 08</td>
<td>ostatní</td>
</tr>
<tr>
<td>Zářivky a jiný odpad obsahující rtuť</td>
<td>20 01 21</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Baterie a akumulátory zařazené pod čísl 16 06 01, 16 06 02 nebo 16 06 03 a netříděné baterie a akumulátory obsahující tyto baterie</td>
<td>20 01 33</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Baterie a akumulátory neuvědomené pod číslem 20 01 33</td>
<td>20 01 34</td>
<td>ostatní</td>
</tr>
<tr>
<td>Vyřazené elektrické a elektronické zařízení obsahující nebezpečné látky neuvědomené pod číly 20 01 21 a 20 01 23</td>
<td>20 01 35</td>
<td>nebezpečný</td>
</tr>
<tr>
<td>Vyřazené elektrické a elektronické zařízení neuvědomené pod číly 20 01 21, 20 01 23 a 20 01 35</td>
<td>20 01 36</td>
<td>ostatní</td>
</tr>
<tr>
<td>Plasty</td>
<td>20 01 39</td>
<td>ostatní</td>
</tr>
<tr>
<td>Kovy</td>
<td>20 01 40</td>
<td>ostatní</td>
</tr>
<tr>
<td>Biologicky rozložitelný odpad (z údržby zeleně)</td>
<td>20 02 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Jíný biologicky nerozložitelný odpad</td>
<td>20 02 03</td>
<td>ostatní</td>
</tr>
<tr>
<td>Směsný komunální odpad</td>
<td>20 03 01</td>
<td>ostatní</td>
</tr>
<tr>
<td>Uliční smetky</td>
<td>20 03 03</td>
<td>ostatní</td>
</tr>
<tr>
<td>Objemný odpad</td>
<td>20 03 07</td>
<td>ostatní</td>
</tr>
</tbody>
</table>

B.III.4.2. Množství odpadu

Odpady vznikající při výstavbě

V období výstavby závěru „Polyfunkční domy – Centrum Lužiny“ budou největší objem odpadu představovat stavební suši z demolic stávajících parkovišť a zpevněných povrchů v ploše budoucí stavby a odtěžené zeminy. Množství odpadu vznikající při výstavbě nebylo, vzhledem ke stupni projektové přípravy stavby v době zpracování dokumentace, stanoveno.

Odpady vznikající za provozu

V následující tabulce jsou uvedeny hrubé odhady množství vybraných odpadů, jejichž vznik se předpokládá za běžného provozu závěru. U odpadů, pro které nebyly k dispozici dostatečné informace nebo jejichž výskyt bude nahodilý, nebylo množství stanoveno a tyto odpady nejsou v tabulce uvedeny. Vzhledem k tomu, že jsou v tabulce uvedeny hrubé odhady množství odpadů, jsou hodnoty pro variantu 1 závěru i pro variantu 2 závěru stejné.
Tabulka B26 Hrubý odhad množství odpadů produkovaných v období provozu

<table>
<thead>
<tr>
<th>Název druhu odpadu</th>
<th>Katalogové číslo</th>
<th>Předpokládané množství odpadu t/rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odpadní barvy a láky obsahující organická rozpouštědla nebo jiné nebezpečné látky</td>
<td>08 01 11</td>
<td>0,04-0,08</td>
</tr>
<tr>
<td>Jiné odpadní barvy a láky neuvuvené pod čislem 08 01 11</td>
<td>08 01 12</td>
<td>0,04-0,08</td>
</tr>
<tr>
<td>Papír a lepenka</td>
<td>20 01 01</td>
<td>8,0-12,0</td>
</tr>
<tr>
<td>Sklo</td>
<td>20 01 02</td>
<td>3,00-6,00</td>
</tr>
<tr>
<td>Zářivky a jiný odpad obsahující rtuť (pouze při výměně)</td>
<td>20 01 21</td>
<td>0,75-0,15</td>
</tr>
<tr>
<td>Baterie a akumulátory zařazené pod číslý 16 06 01, 16 06 02 nebo 16 06 03 a netříděné baterie</td>
<td>20 01 33</td>
<td>0,40-0,75</td>
</tr>
<tr>
<td>Plasty</td>
<td>20 01 39</td>
<td>3,00-6,00</td>
</tr>
<tr>
<td>Biologicky rozložitelný odpad (z údržby zeleně)</td>
<td>20 02 01</td>
<td>7,00-12,00</td>
</tr>
<tr>
<td>Směsný komunální odpad</td>
<td>20 03 01</td>
<td>150,0-200,0</td>
</tr>
<tr>
<td>Uliční smetky</td>
<td>20 03 03</td>
<td>4,00-8,00</td>
</tr>
</tbody>
</table>

B.III.4.3. Způsob nakládání s odpadem

Období stavby

Dodavatel stavby, jako původce odpadů, bude s odpady nakládat v souladu s legislativou platnou v době stavby. Pokud bude v době stavby platit stávající legislativa, bude dodavatel stavby nakládat s odpady v souladu se zákonem číslo 185/2001 Sb., o odpadech, ve znění pozdějších předpisů, vyhláškou MŽP číslo 381/2001 Sb., kterou se vydává Katalog odpadů a stanoví další seznamy odpadů, ve znění pozdějších předpisů, a vyhláškou MŽP číslo 383/2001 Sb., o podrobnostech nakládání s odpady, ve znění pozdějších předpisů.

Dodavatel stavby bude s odpady nakládat také v souladu s platnými předpisy hlavního města Prahy - obecně závaznou vyhláškou hl. m. Prahy číslo 5/2007 Sb., kterou se stanoví systém shromažďování, sběru, přepravy, třídění, využívání a odstraňování komunálních odpadů vznikajících na území hlavního města Prahy a systém nakládání se stavebním odpadem (vyhláška o odpadech) a vyhláškou hl. m. Prahy číslo 2/2005 Sb., kterou se stanoví poplatek za komunální odpad, ve znění pozdějších předpisů.

Ve fázi přípravy stavby se předpokládá uzavření smluvních vztahů se specializovanými odbornými firmami, zabezpečujícími nakládání s odpady a jejich odstraňování. Pro potřeby dodavatele stavby a kontrolní činnost investora bude zpracována vnitřní směrnice pro nakládání s odpady během stavby, která bude klást důraz na předcházení vzniku odpadů a jejich třídění. Po celou dobu stavby bude dodavatelem stavby vedena evidence odpadů. Při kolaudaci stavby bude dodavatelem doložena evidence odpadů.

Při výstavbě záměru bude zejména zajistěno, že:

- Stavební odpad bude v souladu s vyhláškou 381/2001 (katalog odpadů) tříděn a shromažďován odděleně podle kategorií (nebezpečný a ostatní odpad) a druhů.
• Tříděný odpad bude ukládán do rozměrově vhodných kontejnerů odběratelů odpadů nebo stavební firmy.
• Vytyřděné nebezpečné odpady budou ukládány do speciálních nádob dodaných jejich odběratelem (odběrateli).
• Vybrané druhy stavebních odpadů, jako jsou stavební suť a zemina, budou nakládány přímo na přepravní prostředky a vyváženy z místa vzniku do předem určených lokalit, kde budou využity, dočasně deponovány nebo definitivně uloženy na příslušné skládky.
• Shromažďovací prostředky (nádoby) na nebezpečný odpad budou zabezpečeny tak, aby nemohlo dojít k neoprávněné manipulaci s odpady nebo k jejich úniku do životního prostředí.
• Kontejnery a nádoby na stavební odpad budou vyváženy ihned po naplnění, aby nedocházelo k nepříznivému estetickému, senzorickému nebo hygienickému dopadu na okolní prostředí.

Období provozu

Odstraňování odpadů z území a objektu záměru bude zajištěno dodavatelsky, za úplatu. K odvozu a odstranění veškerých komunálních a tříděných odpadů budou využívány služby odborných svozových firem, které budou mít nezbytné souhlas k provozování zařízení k využívání, odstraňování, sběru nebo výkupu příslušných druhů odpadů. Součástí záměru nebude vlastní zařízení na zneškodňování odpadů (skládka, spalovna).

Objekty záměru budou vybaveny dostatečným počtem shromažďovacích prostředků (nádob) na tříděný a směsný komunální odpad. V objektech záměru jsou navrženy prostory pro nádoby na shromažďování směsného i tříděného odpadu. Tyto prostory jsou umístěny v jednotlivých objektech záměru tak, aby byly snadno dostupné a aby nedocházelo k nepříznivému estetickému, senzorickému nebo hygienickému působení odpadů na okolí.

Podle § 38 zákona číslo 185/2001 Sb. o odpadech, ve znění pozdějších předpisů, platí pro některé výrobky povinnost zpětného odběru. Jedná se například o odpadní oleje, výbojky a zářivky nebo elektrické akumulátory. Povinností výrobce nebo dovozce těchto zařízení je zpětný odběr těchto výrobků. Občané hl. m. Prahy také mohou nebezpečný odpad zdarma odevzdat ve sběrných dvorech hlavního města Prahy, a to včetně lednic, televizorů a monitorů.

Nakládání s odpadem z provozu záměru „Polyfunkční domy – Centrum Lužiny“ se bude řídit zejména následujícími obecnými pravidly:
• Odpad bude tříděn na papír a lepenku, sklo, plasty, nápojové kartony, objemný odpad, nebezpečný odpad a směsný odpad.
• Odpad bude shromažďován na vymezených sběrných místech do sběrných nádob, jejichž typ bude dohodnut se společnostmi, které budou zajišťovat odvoz a odstranění odpadu.
• Vytyřděný směsný odpad, papír a lepenka, sklo, plasty a nápojové kartony se budou odkládat do označených sběrných nádob.
• Do sběrných nádob budou ukládány pouze složky odpadu odpovídající označení sběrné nádoby.
Frekvence a způsob svozu, stejně jako způsob využití a zneškodnění odpadu bude dohodnut se svozovými společnostmi.

Objemný odpad bude odkládán v určenou dobu do označených velkoobjemových kontejnerů nebo bude předáván do sběrných dvorů hlavního města Prahy.

Nebezpečný odpad bude předáván ve stanovenou dobu na určené místo nebo bude odevzdáván do sběrných dvorů hlavního města Prahy.

Odpady z úklidu podzemních garáží (smetky a obsah odpadkových košů) budou ukládány do nádob na směsný komunální odpad.

Odpady z údržby a oprav budou jako jsou zářivky a výbojky, upotřebené akumulátory a baterie, zbytky barev a ředidel, upotřebené oleje a mazadla budou shromažďovány servisními firmami, které je budou odvážet k odstranění (za úplatu komerčními firmami oprávněnými k nakládání s těmito odpady).

B.III.4.4. Odpady vzniklé po dožití stavby

Po dožití stavby záměru bude nutno všechny stavební materiály, technologická zařízení a odpady vhodným způsobem odstranit v souladu s legislativou platnou v době demolice stavby. Odpady bude nutno v maximální možné míře roztřídit a dále znovu využít nebo recyklovat (například betonové a ocelové konstrukce, železné a neželezné kovy, sklo, kabely, atd.). Odpady, které nebude možno znovu využít, ani recyklovat budou odstraněny v souladu s aktuálním zákonem o odpadech.

B.III.5. Ostatní

B.III.5.1. Hluk

Hluk související s realizací záměru “Polyfunkční domy – Centrum Lužiny” byl ve fázi identifikace potenciálních negativních vlivů stavby a provozu záměru vyhodnocen jako jeden z možných faktorů narušení životního prostředí. Vlivy hluku související s realizací záměru přítom lze očekávat jak při provádění stavební činnosti, tak během vlastního provozu.

Z výše uvedených důvodů byly pro obě varianty záměru zpracovány specializované hlukové studie (Ekola, 2013; Ekola, 2014). Hlukové studie byly vypracovány pro zjištění vlivu výstavby a běžného provozu záměru na akustickou situaci v zájmovém území a v jeho okolí, především pak u nejblížší obytné zástavby.

Hlukové studie byly zpracovány na základě podkladů předaných pro obě varianty záměru projektancy a investory stavby (zásady organizace výstavby, údaje o bodových zdrojích hluku v areálu, informace o tvarách a velikostech objektů záměru, údaje o dopravě související s provozem záměru, intenzity dopravy na uliční síti v zájmovém území, prognózy intenzit automobilové dopravy a další). Podklady získané od investorů a projektantů doplnil zpracovatel hlukové studie místním štěrbením a měřením hluku ve venkovním prostoru (viz kapitola C.2.5. Hluk - počáteční akustická situace).
Hlavní výsledky a závěry hlukových studií týkající se hlukové zátěže související s výstavbou a provozem záměru jsou uvedeny v kapitole dokumentace „D.I.3.1. Vlivy na hlukovou situaci“. Předmětem této kapitoly je identifikovat a popsat hlavní zdroje hluku související s výstavbou a provozem záměru.

B.III.5.1.1. Hluk v období výstavby

Stavební práce při realizaci varianty 1 záměru a varianty 2 záměru se nebudou významně lišit. Vzhledem k tomu, že zásady organizace výstavby (ZOV) použité jako podklad pro výpočet hluku z výstavby záměru reprezentují kvalifikovaný odhad (předpoklad) rozsahu, charakteru a trvání stavebních prací na daném stupni projektové přípravy záměru je níže uvedený popis stavebních prací použitelný jak pro variantu 1 záměru, tak pro variantu 2 záměru.

Postup stavebních prací

Stavba záměru bude prováděna s použitím obvyklých stavebních postupů a obvyklých stavebních strojů a stavební mechanizace. Stavební práce související s realizací 1. až 4. etapy výstavby záměru (přípravné práce, zakládání, montáž prefabrikované nosné konstrukce – východní objekt, montáž prefabrikované nosné konstrukce – západní objekt) a provoz nákladních vozidel budou probíhat 5 dnů v týdnu pouze v denní době od 8:00 do 18:00 hodin. Stavební práce v 5. a 6. etapě výstavby (ostatní stavební a montážní práce, dokončovací práce) budou prováděny v pracovních dnech v denní době od 8:00 do 21:00 hodin.

V případě, že by stavební práce musely být z technologických důvodů realizovány i mimo výše uvedené hodiny, nesmí v době od 21:00 do 22:00 hodin a v době od 6:00 do 7:00 hodin překročit hluk v chráněném venkovním prostoru staveb hodnotu $L_{Aeq} = 60\, \text{dB}$ a v době od 22:00 do 6:00 hodin hodnotu $L_{Aeq} = 45\, \text{dB}$.

Etapizace výstavby a postup stavebních prací

Tabulka B27 Etapizace výstavby (kvalifikovaný odhad)

<table>
<thead>
<tr>
<th>Označení etapy</th>
<th>Náplň</th>
<th>Trvání etapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Přípravné práce</td>
<td>1 měsíc</td>
</tr>
<tr>
<td>2.</td>
<td>Spodní stavba – zemní práce, pilotové zakládání stavby</td>
<td>4 měsíce</td>
</tr>
<tr>
<td>3.</td>
<td>Montáž železobetonové skeletové prefabrikované nosné konstrukce – východní objekt</td>
<td>8 měsíců</td>
</tr>
<tr>
<td>4.</td>
<td>Montáž železobetonové skeletové prefabrikované nosné konstrukce – západní objekt</td>
<td>12 měsíců</td>
</tr>
<tr>
<td>5.</td>
<td>Ostatní stavební práce</td>
<td>24 měsíce</td>
</tr>
<tr>
<td>6.</td>
<td>Dokončovací práce</td>
<td>20 měsíců</td>
</tr>
</tbody>
</table>

Etapa 1 – Přípravné práce

Etapa 2 – Zakládání

V této etapě výstavby budou nejprve realizovány základové konstrukce objektů záměru. Součástí této fáze bude vrtání pilot postupně pod východním objektem a následně pod západním objektem a zabezpečovací práce. Hlavními zdroji hluku budou střední a malé mechanizmy na zemní práce (rypadlo, nakladač), kompresor, mobilní jeřáb, sbíjecí kladivo, čerpadlo betonu, vrtací souprava, motorová pila, svářecí stroj, míchačka betonu, řetězová pila, kotoučová pila a úhlová bruska. Předpokládaná intenzita nákladní dopravy na veřejných komunikacích bude činit přibližně 2 nákladní automobily za hodinu.

Etapa 3 a 4 – Montáž železobetonové skeletové prefabrikované nosné konstrukce – východní objekt (3. etapa) a západní objekt (4. etapa)

V rámci 3. etapy výstavby bude provedena montáž a betonáž železobetonové skeletové prefabrikované nosné konstrukce východního objektu záměru, včetně horizontální a vertikální vnitrostaveništní dopravy. Předpokládá se, že stavební práce budou probíhat částečně v souběhu s 2. etapou výstavby záměru – vrtáním pilot pro západní objekt (2 měsíce).

Součástí stavebních prací souvisejících s realizací 4. etapy výstavby záměru bude montáž a betonáž železobetonové skeletové prefabrikované nosné konstrukce západního objektu, včetně horizontální a vertikální vnitrostaveništní dopravy. Zahájení realizace 4. etapy stavby se předpokládá po dokončení její 3. etapy.
Při realizaci 3. a 4. etapy stavby budou v prostoru staveniště provozovány následující stavební mechanizmy: věžový jeřáb (východní objekt), 2 věžové jeřábky (západní objekt), mobilní jeřáb, čerpadlo betonové směsi, motorová pila, svářecí stroj, úhlová bruska, elektrická vrtačka. Intenzita stavební dopravy při realizaci betonáže a během dalších stavebních prací bude činit přibližně 4 nákladní automobily za hodinu.

Etap 5 – Ostatní stavební práce

V rámci této etapy stavby bude u obou objektů záměru postupně realizován obvodový a střešní plášť a budou provedeny vnitřní stavební práce - vyzdívání konstrukcí, realizace hrubých podlah, instalace technického zařízení budov (VZT, měření a regulace, výtahy, elektroinstalace, vytápění a další). Předpokládá se, že stavební práce budou probíhat v souběhu s 3. etapou a se 4. etapou výstavby.

Etap 6 – Dokončovací práce

Po dokončení výstavby objektů záměru budou provedeny finální úpravy vnějších ploch a výstavba vnitroareálových komunikací a chodníků. V rámci této etapy stavby budou také probíhat stavební práce uvnitř objektů záměru, které budou zahrnovat realizaci podhledů, zámečnických konstrukcí, podlahových krytin, dlažby, obkladů, nátěrů, malby, elektroinstalace a podobně. Dokončovací práce budou po dobu přibližně 12 měsíců probíhat současně s 5. etapou výstavby.

Při realizaci 5. a 6. etapy stavby budou v provozu následující stavební mechanizmy: sbíjecí kladivo, čerpadlo betonu, kompresor, mobilní jeřáb, věžový jeřáb, stavební výtah, silo na maltové směsi, míchačka betonu, kotoučová pila, řetězová pila, elektrická vrtačka, akumulátorové šroubováky, úhlová bruska, ponorný vibrátor, svářecí stroj, nakladač a jiná malá mechanizace typu Bobcat. Předpokládaná intenzita nákladní dopravy bude činit zhruba 2 automobily za hodinu.

Hlavní zdroje hluku v období výstavby

Bodové zdroje hluku

Hlavními bodovými zdroji hluku v období výstavby záměru „Polyfunkční domy – Centrum Lužiny“ budou „stacionární“ stavební mechanizmy nasazené v průběhu zemních a stavebních prací. Stavební mechanizmy budou používány především k rozrušení a odtěžení stávajících zpevněných povrchů, k pro otáčení a nakládání (mitezí, materiálů) pro stavbu nových a jiná malá mechanizace typu Bobcat. Předpokládaná intenzita nákladní dopravy bude činit zhruba 2 automobily za hodinu.
Hlavními liniovými zdroji hluku v průběhu výstavby záměru bude obslužná stavební doprava těžkými nákladními automobily po staveništi a po pozemních komunikacích zájmového území stavby. Bude se jednat zejména o odvoz vytěžených zemin (výkopku), dovoz betonu domicíčaří betonu (automixy) a návoz stavebních materiálů, strojů a zařízení. V následující tabulce jsou uvedeny hlavní (hlukově nejvýznamnější) předpokládané stavební mechanismy nasazené v uvažovaných etapách stavby. V tabulce jsou pro jednotlivé stavební stroje a zařízení uvedeny doby jejich technologicky reálné aktivní práce v rámci jednoho pracovního dne a jejich akustické charakteristiky.

Při modelování hlukové situace byla brána v úvahu skutečnost, že stavební mechanismy nejsou plně vytíženy ani během trvání celé stavby, ani během trvání celé pracovní směny. Vytížení stavebních mechanismů je ovlivňováno pracovními přestávkami, kontrolou strojů, přesouváním mechanismů a podobně.

Hlukové parametry předpokládaného strojního vybavení byly získány z odborné literatury, ze specializovaných studií a z archivu zpracovatele hlukové studie. S ohledem na to, že výstavba bude probíhat v blízkosti obytných domů, je třeba při realizaci stavby zvolit zařízení s hlučností nižší nebo nejvýše stejnou jakou uvádí tabulka.

Vzhledem k tomu, že předpokládané strojní vybavení použité jako podklad pro výpočet hluku z výstavby záměru představuje kvalifikovaný odhad, který bude v dalších stupních projektové přípravy záměru zpřesňován, je možno použít niže uvedený přehled hlavního strojního vybavení jak pro variantu 1 záměru, tak pro variantu 2 záměru.

Tabulka B28 Hlavní použité strojní vybavení včetně akustických parametrů a jeho uvažované nasazení v dílčích fázích stavby

<table>
<thead>
<tr>
<th>Strojní vybavení</th>
<th>Akustický tlak L_{NA} v 10 m</th>
<th>Etapa 1</th>
<th>Etapa 2</th>
<th>Etapa 3</th>
<th>Etapa 4</th>
<th>Etapa 5</th>
<th>Etapa 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rypadlo CAT</td>
<td>73,0</td>
<td>2 ks 6 hod</td>
<td>1 ks 6 hod</td>
<td>–</td>
<td>1 ks 4 hod</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nakladač</td>
<td>74,0</td>
<td>2 ks 6 hod</td>
<td>1 ks 6 hod</td>
<td>–</td>
<td>1 ks 4 hod</td>
<td>2 ks 3 hod</td>
<td>2 ks 3 hod</td>
</tr>
<tr>
<td>Sbíjecí kladivo</td>
<td>76,0</td>
<td>2 ks 4 hod</td>
<td>2 ks 4 hod</td>
<td>–</td>
<td>–</td>
<td>2 ks 4 hod</td>
<td>–</td>
</tr>
<tr>
<td>Kompresor</td>
<td>72,0 (7 m)</td>
<td>1 ks 4 hod</td>
<td>1 ks 4 hod</td>
<td>–</td>
<td>–</td>
<td>1 ks 4 hod</td>
<td>–</td>
</tr>
<tr>
<td>Autojeřáb</td>
<td>70,0</td>
<td>1 ks 6 hod</td>
<td>2 ks 6 hod</td>
<td>–</td>
<td>–</td>
<td>1 ks 6 hod</td>
<td>1 ks 6 hod</td>
</tr>
<tr>
<td>Vrtná souprava pro piloty o průměru 600-800 mm</td>
<td>82</td>
<td>–</td>
<td>1 ks 6 hod</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Stavební jeřáb Liebherr</td>
<td>60,0</td>
<td>–</td>
<td>–</td>
<td>1 ks 6 hod</td>
<td>2 ks 6 hod</td>
<td>3 ks 6 hod</td>
<td>2 ks 8 hod</td>
</tr>
<tr>
<td>Domicíáčař betonu</td>
<td>75,0</td>
<td>–</td>
<td>3 ks 6 hod</td>
<td>3 ks 6 hod</td>
<td>3 ks 6 hod</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Čerpadlo betonu (automobilní)</td>
<td>65,0</td>
<td>–</td>
<td>2 ks 6 hod</td>
<td>2 ks 6 hod</td>
<td>2 ks 6 hod</td>
<td>1 ks 5 hod</td>
<td>–</td>
</tr>
<tr>
<td>Svářecí stroj (elektrický)</td>
<td>65,0</td>
<td>–</td>
<td>2 ks 6 hod</td>
<td>3 ks 6 hod</td>
<td>3 ks 6 hod</td>
<td>–</td>
<td>1 ks 6 hod</td>
</tr>
<tr>
<td>Stavební výtah NOV 1000</td>
<td>52,0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1 ks 5 hod</td>
<td>1 ks 5 hod</td>
</tr>
</tbody>
</table>
Na základě předpokládaného harmonogramu výstavby byly určeny nejméně příznivé souběhy stavebních činností z hlediska hluku ze stavební činnosti. Předpokládá se, že výskyt takové situace je pravděpodobný při souběhu stavebních prací souvisejících se zakládáním a s výstavbou nosné konstrukce ve 2. a 3. etapě výstavby a při souběhu realizace nosných konstrukcí západního objektu a ostatních stavebních prací ve východním objektu záměru, to znamená při souběhu 4. a 5. etapy stavby.

V následující tabulce jsou pro výše uvedené potenciální souběhy etap stavebních prací prezentovány uvažované počty současně nasazených stavebních strojů ve venkovním prostoru. Zároveň je uvedena jejich maximální možná doba nasazení během dne s ohledem na splnění hygienického limitu pro hluk z výstavby v chráněném venkovním prostoru a chráněném venkovním prostoru okolních staveb. Čísla etap odpovídají rozdělení stavebních prací do etap, tak jak je uvedeno v části „Etapizace výstavby a postup stavebních prací“.

Tabulka B29 Předpokládané nasazení hlavních stavebních mechanismů při souběhu 2. etapy stavby (zakládání západního objektu) a 3. etapy stavby (realizace nosné konstrukce východního objektu)

<table>
<thead>
<tr>
<th>Mechanismus při souběhu dílčích etap výstavby č. 2 a č. 3</th>
<th>Počet strojů</th>
<th>Doba použití stroje (hodiny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobil nákladní</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Rypadlo CAT</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Nakladač</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Sbíjecí kladivo</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Kompresor</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Autojeřáb</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Stavební jeřáb Liebherr</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Prosinec 2014
Číslo úkolu: 2014-S-06
Mechanismy při souběhu dílčích etap výstavby č. 2 a č. 3

<table>
<thead>
<tr>
<th>Název stroje</th>
<th>Počet strojů</th>
<th>Doba použití stroje (hodiny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domíchávač betonu</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Čerpadlo betonu</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Svářecí stroj</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Malá mechanizace</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Kotoučová pila</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Uhlová bruska</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Stavební míchačka TOP 1402 HR</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Řetězová pila HUSQVARNA 353</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Vrtná pilotovací souprava – varianta 1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Vrtná pilotovací souprava – varianta 2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabulka B30 Předpokládané nasazení hlavních stavebních mechanismů při souběhu 2. etapy stavby (zakládání západního objektu) a 3. etapy stavby (realizace nosné konstrukce východního objektu)

<table>
<thead>
<tr>
<th>Mechanismy při souběhu dílčích etap výstavby č. 4 a č. 5</th>
<th>Počet strojů</th>
<th>Doba použití stroje (hodiny)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobil nákladní</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Rypadlo CAT</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nakladač</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Nakladač</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sbíjecí kladivo</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Kompresor</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Autojeřáb</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Stavební jeřáb Liebherr</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Domíchávač betonu</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Čerpadlo betonu (automobilní)</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Čerpadlo betonu (automobilní)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Svářecí stroj (elektrický)</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Stavební výtah NOV 1000</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Malá mechanizace</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Kotoučová pila</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Uhlová bruska</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ponorný vibrátor</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Stavební míchačka TOP 1402 HR</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Vzhledem k hygienickému limitu dle nařízení vlády č. 272/2011 Sb. se při stavební činnosti v době od 7 do 21 hodin hodnotí výsledná ekvivalentní hladina hluku (akustického tlaku A) za 14 hodin. Při výpočtu ekvivalentní hladiny L₁₀₀₀ se 14 hodinovou pracovní dobou je lhostejné, zda stroje pracují po uvedenou dobu nasazení současně nebo každý zvláště. Ekvivalentní hladina akustického tlaku A vychází v obou případech stejná.

Hlavní stavební mechanizace bude v průběhu jednotlivých etap výstavby umístěna na různých místech a v různých vzdálenostech od jednotlivých výpočtových (kontrolních) bodů. Přesné umístění strojní mechanizace není ve stávající fázi projektové přípravy stavby známo, a proto byl pro modelový výpočet hluku ze stavby použit jeho předběžný návrh. Použité stavební mechanizmy a jejich umístění bude upřesněno ve fázi zpracování dokumentace pro stavební povolení.

Prosinec 2014
Číslo úkolu: 2014-S-06
Konkrétní strojní zařízení použité při výstavbě záměru “Polyfunkční domy – Centrum Lužiny“ bude známo až po výběru dodavatele stavby. Dodavatel stavby se vsak bude muset řídit podmínkami stavebního povolení a bude muset dodržet hygienické limity pro hluk ze stavby. Z toho vyplývá, že strojní zařízení dodavatele bude muset minimálně splnit hodnoty akustického výkonu uvažované v akustické studii.

Veškerá stacionární zařízení nutná pro provádění stavebních prací, jako jsou například stacionární elektrické pily a kompresory, budou umístěna v uzavřených prostorech v objektech staveniště, případně ohrazeny protihlukovými zástěnami tak, aby svým provozem co nejméně ovlivňovala akustickou situaci v okolí stavby.

Vliv stavební činnosti a dopravní obsluhy staveniště byl zjišťován na základě dostupných údajů o postupu stavebních prací, získaných od projektanta stavby v době zpracování dokumentace pro územní řízení. Z tohoto důvodu je nutno považovat údaje týkající se parametrů stavební mechanizace, časových údobí nasazení jednotlivých mechanizmů a jejich pracovního nasazení během jedné směny za indikativní. Uvedené údaje budou zpřesněny v průběhu přípravy dokumentace pro stavební povolení. Na základě upřesněného zadání projektu pro stavební povolení bude aktualizována také hluková studie.

Liniové zdroje

Hlavními liniovými zdroji hluku v průběhu výstavby záměru “Polyfunkční domy – Centrum Lužiny“ bude obslužná stavební doprava těžkými nákladními automobily po vozovkách a ostatních dopravních plochách v zájmovém území stavby. Bude se jednat zejména o odvoz stavební suti, odvoz vytěžených zemin (výkopku), dovoz betonu domíchávači betonu (automixy) a návoz stavebních materiálů, strojů a zařízení.

Intenzity stavební nákladní dopravy v jednotlivých etapách výstavby vyplývají ze zásad organizace výstavby. Intenzity obslužné dopravy staveniště při souběhu 2. etapy (zakládání – západní objekt) a 3. etapy stavby (hlavní stavební výroba – východní objekt) byly pro obě varianty záměru uvažovány na úrovni 2 nákladní automobily za hodinu od východního objektu a 4 nákladní automobily za hodinu od západního objektu obousměrně.

Při souběhu 4. etapy (hlavní stavební výroba – západní objekt) a 5. etapy stavby (ostatní práce – západní objekt) byla intenzita stavební dopravy uvažována pro obě varianty záměru na úrovni 6 nákladních automobilů za hodinu v obou směrech. Jedná se o maximální počty nákladních automobilů z výstavby obou objektů záměru.

Trasy obslužné dopravy staveniště

Staveniště obou objektů záměru budou napojena na stávající komunikaci Archeologická. Příjezd stavební dopravy na staveniště, které bude umístěno západně od budovy stávajícího obchodního centra, je pro obě varianty záměru uvažován přes ulice Jeremiášova, Mukařovského, Archeologická. Odjezd staveništní dopravy bude veden ve stejně trase v obráceném pořadí.
Příjezd stavební dopravy na staveniště situované východně od budovy stávajícího obchodního centra je pro obě varianty záměru uvažován přes ulice Jeremiášova, Archeologická. Odjezd staveništní dopravy bude veden ve stejně trase v obráceném pořadí. Uvažované dopravní trasy stavební dopravy jsou vyznačeny v níže uvedeném obrázku.

Obrázek B3 Trasy obslužné dopravy staveniště pro obě varianty záměru

![Obrázek B3 Trasy obslužné dopravy staveniště pro obě varianty záměru](image)

Přepravní trasa na / ze staveniště – východní objekt
Přepravní trasa na / ze staveniště – západní objekt
Umístění stavby

Vzdálenější trasy pro dopravu vytěžené zeminy na skládku, odpadů a ostatních materiálů k místům skládek, případně deponií, a ke zdrojům materiálů bude možno navrhnout a projednat až po stanovení konkrétních lokalit skládek (deponií) a míst zdrojů, to znamená po výběru zhotovitele prací.

B.III.5.1.2. Hluk v období provozu

V řešeném území záměru „Polyfunkční domy – Centrum Lužiny“ je a bude rozhodujícím zdrojem hluku doprava po pozemních komunikacích, to znamená automobilový provoz. Provoz záměru nebude zdrojem impulsního hluku, hluku s výraznými složkami o kmitočtu vyšším než 8 kHz ani ultrazvukového hluku.
Zdroje hluku v období provozu

Pro výpočet ekvivalentních hladin akustického tlaku (hluku) a posouzení vlivu záměru “Polyfunkční domy – Centrum Lužiny” po jeho uvedení do běžného provozu na akustické charakteristiky okolního prostředí byly uvažovány stacionární a mobilní zdroje hluku uvedené níže. Plošné zdroje hluku v rámci záměru nejsou uvažovány.

Stacionární zdroje hluku

V následujících dvou obrázcích jsou znázorněny situace prezentující umístění stacionárních zdrojů hluku na střechách a vjezdy/výjezdy do/z garáží záměru nejprve pro variantu 1 záměru a následně také pro variantu 2 záměru. Umístění zdrojů hluku je znázorněno tak, tak jak byla tato umístění použita pro matematické modelování hlukové situace v okolí záměru. Detailní umístění a provedení jednotlivých stacionárních zdrojů hluku i výfukových a větracích otvorů bude řešeno v dalším stupni projektové přípravy stavby.

Obrázek B4 Situace umístění stacionárních zdrojů na střechách a vjezdy/výjezdy do/z garáží záměru – varianta 1 záměru

Prosinec 2014
Číslo úkolu: 2014-S-06
Obrázek B5 Situace umístění stacionárních zdrojů na střechách a vjezdy/výjezdy do/z garáži záměru – varianta 2 záměru

Mezi hlavní stacionární zdroje hluku záměru, které mohou ovlivňovat akustickou situaci v chráněném venkovním prostoru staveb zájmového území, budou v obou variantách záměru patřit venkovní technologická zařízení umístěná na střechách a obvodovém plášti objektů záměru. V daném případě se bude jednat o vzduchotechnické jednotky, o sání vzduchu pro náhradní zdroje elektrické energie umístěné na fasádách objektů a o výduchy náhradních zdrojů elektrické energie umístěné na střechách objektů záměru. Ve variantě 1 záměru jsou uvažovány také chladící jednotky pro chlazení kancelářských prostor. Tyto jednotky nejsou ve variantě 2 záměru navrhovány. Přehled uvažovaných stacionárních zdrojů hluku, které by mohly ovlivnit akustickou situaci v okolí záměru a které byly proto použity pro modelový výpočet akustické situace, je, spolu s jejich základními hlukovými parametry, uveden v následující tabulce.

Tabulka B31 Popis stacionárních zdrojů hluku pro obě varianty záměru

<table>
<thead>
<tr>
<th>Název zdroje</th>
<th>Umístění</th>
<th>Akustický parametr zdroje, výkon (tlak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vzduchotechnická jednotka Alter, výkon 700 m³/hod</td>
<td>Střecha objektů</td>
<td>$L_{WA} = 62$ dB (při nejvyšším výkonu)</td>
</tr>
<tr>
<td>Vzduchotechnická jednotka Alter, výkon 1000 m³/hod</td>
<td>Střecha objektů</td>
<td>$L_{WA} = 65$ dB (při nejvyšším výkonu)</td>
</tr>
<tr>
<td>Suchý chladič, výkon 250 kW (pouze pro variantu 1 záměru)</td>
<td>Střecha západního objektů</td>
<td>$L_{pA,10m} = 44$ dB</td>
</tr>
</tbody>
</table>
Akustické parametry zdrojů hluku byly stanoveny na základě technické dokumentace výrobců, případně na základě znalostí akustických charakteristik obdobných typů zařízení. Aby byly splněny imisní limity pro stacionární zdroje hluku, bude nutno realizovat obecná (obvyklá) opatření ke snížení přenosu vibrací a hluku. Ve variantě 1 záměru je jako protihlukové opatření navrženo zatlumení chladící jednotky umístěné na západním objektu záměru o 10 dB na hodnotu akustického tlaku v deseti metrech od zdroje $L_{A,10m} = 34 \text{ dB}$.

Mobilní zdroje hluku

Hlavní mobilní zdroje hluku související s běžným provozem záměru bude v obou jeho variantách představovat obslužná automobilová doprava vedená po komunikacích v jeho okolí. Dopravu vyvolanou provozem záměru budou tvořit osobní automobily obyvatel (rezidentů) a návštěvníků objektů záměru, a nákladní automobily zajišťující dopravní obsluhu navrhovaných polyfunkčních domů (odvoz odpadů, stěhování a podobně). Ve variantě 1 záměru se uvažuje také doprava související s provozem administrativních ploch (automobily zaměstnanců a návštěvníků). Ve variantě 2 záměru nejsou administrativní plochy uvažovány.

Pro vyhodnocení hluku ze silniční dopravy byly použity modelové (prognostické) intenzity zdrojové/cílové automobilové dopravy a jejich rozpady na okolní komunikační síti, které byly převzaty z dopravně-inženýrských podkladů zpracovaných Technickou správou komunikací hlavního města Prahy na základě předpokládaného využití objektů záměru (rozsahe a způsob užívání jednotlivých ploch, atd.).

Plošné zdroje hluku

Plošné zdroje hluku nejsou v rámci záměru „Polyfunkční domy – Centrum Lužiny“ uvažovány.
B.III.5.2. Vibrace

Hlavními zdroji vibrací v období výstavby záměru budou pneumatická a elektrická kladiva pro rozrušování zpevněných povrchů a stavebních konstrukcí v zázemí pro realizaci záměru, stroje na provedení pilot, vibrátory na hutnění betonu a mechanizmy pro hutnění zemin a podkladových vrstev pro komunikace. Vibrace v okolí stavby by mohly při rychlé jízdě způsobit i nákladní automobily na nerovném povrchu vozovek.

Stavební práce, které by mohly být zdrojem vibrací, budou prováděny tak, aby bylo minimalizováno přenášení vibrací na pracovníky a aby nedocházelo k poškozování budov uvnitř nebo vnitřního hmotného majetku. Podrobněji bude problematika vibrací řešena v projektové dokumentaci pro stavební řízení, případně na základě znalostí dodavatele prací a strojního zařízení, které bude dodavatel prací používat.

Za běžného provozu se v objektu záměru nepředpokládají žádné významnější zdroje vibrací. Pokud budou v objektech záměru zdroje vibrací nainstalovány (například kompresory chladících zařízení nebo vzduchotechnická zařízení), bude eliminace účinků vibrací řešena pružným uložením jednotlivých zařízení i důsledným dilatováním konstrukcí pevně spojených se zařízeními produkujícími vibrace od ostatních stavebních konstrukcí. Mezi strojní části zařízení a stavební konstrukce by v takovém případě byly osazeny podložky zamezující přenosu vibrací.

Eliminace případných vibrací bude provedena takovým způsobem, aby nedocházelo k přenosu vibrací do okolního prostředí. V obytných prostorách (bytech) i v pracovním prostředí samotného záměru, stejně jako v obytných a ostatních objektech v jeho okolí bude zajištěno, aby nedocházelo k překračování povolených hodnot vibrací dle platných hygienických předpisů.

B.III.5.3. Elektromagnetické záření

Záření ionizující

Záření neionizující

Součástí záměru nebudou otevřené generátory vysokých a velmi vysokých frekvencí. Výstavbou ani provozem záměru nebudou emitována neionizující elektromagnetické záření v úrovních, které by mohly mít zjišťovatelný negativní dopad uvnitř nebo vně území záměru. Kromě osvětlení a běžných telekomunikačních zařízení nebudou v území záměru trvale používána žádná zařízení, která jsou zdrojem elektromagnetického záření.
Území záměru není situováno do oblastí vystavené působení externích zdrojů vysokých a velmi vysokých frekvencí. V rámci stavby nebude nutno realizovat opatření, která by vyloučila indukovaná elektromagnetická pole překračující přípustné hodnoty.

B.III.5.4. Zápach

Objekty ani zařízení záměru nebudou zdrojem obtěžujícího zápachu. Veškeré možné zdroje zápachu, jako jsou kuchyně nebo sociální zařízení, budou odvětrány nad střechy objektů a nebudou způsobovat obtěžování zápachem. V objektech záměru nebudou provozovány činnosti, které by byly zdrojem zápachu.

B.III.5.5. Jiné výstupy

Jiné výstupy než výstupy uvedené výše v této kapitole dokumentace nejsou v rámci výstavby a běžného provozu záměru uvažovány.

B.III.6. Doplňující údaje

B.III.6.1. Významné terénní úpravy

V území stavby se nacházejí převážně parkovací a zpevněné plochy obchodního centra Lužiny (viz fotodokumentace v příloze dokumentace číslo 10), které prošlo v nedávné době rekonstrukcí. Terénní úpravy budou spočívat v odtěžování zemin v místech základů jednotlivých objektů (objekty nebudou mít podzemní podlaží), komunikací a zpevněných ploch a v modelaci terénu, která bude sloužit k vytvoření konečných venkovních úprav.

Realizací záměru dojde k zastavění plochy uvolněné demolicí stávajících zpevněných ploch zásobovacích dvorů (manipulačních a parkovacích ploch) obchodního centra Lužiny. Stávající antropogenně pozměněné plochy v území budou nahrazeny novými objekty záměru. Výstavba záměru nebude znamenat významné terénní úpravy.

B.III.6.2. Zásahy do krajin

Stavba záměru je plánována v intravilánu města, v městském prostředí velmi významně ovlivněném působením člověka, v těsné návaznosti na velkoměstskou zástavbu převážně sídlištního charakteru, bez přímé vazby na krajinné systémy.

ČÁST C – ÚDAJE O STAVU ŽIVOTNÍHO PROSTŘEDÍ V DOTČENÉM ÚZEMÍ

C.1. Výčet nejzávažnějších environmentálních charakteristik dotčeného území

C.1.1. Územní systémy ekologické stability krajiny

Územní systém ekologické stability krajiny (ÚSES) je vzájemně propojený soubor přirozených i pozměněných, avšak přírodě blízkých ekosystémů, které udržují přírodní rovnováhu. Obecně je ÚSES tvořen soustavou biocenter vzájemně propojených biokoridory. Rozlišují se místní (lokální), regionální a nadregionální územní systémy ekologické stability, v jejichž rámci jsou biocentra a biokoridory vymezeny.

Obrázek C1 Územní systémy ekologické stability krajiny

Hlavním cílem vytváření územních systémů ekologické stability krajiny je trvalé zajištění biodiverzity, rozmanitosti ekosystémů a biologické rozmanitosti, která je definována jako variabilita všech žijících organismů a jejich společenstev a zahrnuje rozmanitost v rámci druhů i mezi druhy.
V zájmovém území pro realizaci připravovaného záměru ani v dosahu jeho přímých vlivů se nenachází žádný prvek ÚSES (viz výše uvedený obrázek). Nejbližším prvkem ÚSES v okolí výstavby záměru je funkční lokální biokoridor L3/243 s vloženými funkčními lokálními biocentry L1/275 a L1/214, který se nachází přibližně 1 km jižně od záměru. Žádný prvek ÚSES nebude uvažovaným záměrem dotčen.

C.1.2. Zvláště chráněná území

Zvláště chráněná území přírody

Zvláště chráněná území přírody jsou definována zákonem číslo 114/1992 Sb., o ochraně přírody a krajiny, ve znění pozdějších předpisů. V dosahu záměru a jeho možných přímých vlivů se nenachází žádné velkoplošné zvláště chráněné území (národní park, chráněná krajinná oblast) ani maloplošné zvláště chráněné území (národní přírodní rezervace, národní přírodní památka, přírodní památka, přírodní rezervace) ve smyslu zákona o ochraně přírody a krajiny, jak dokládá následující obrázek.

Obrázek C2 Zvláště chráněná území, chráněná území Natura 2000 (EVL a PO), přírodní parky a registrované významné krajinné prvky
Nejbližším zvláště chráněným územím je přírodní rezervace Prokopské údolí, situovaná zhruba 0,8 km východně od záměru (viz výše uvedený obrázek). Dalšími zvláště chráněnými územími v širším okolí záměru jsou národní přírodní památka Dalejský profil (přibližně 1,1 km jižně od záměru), přírodní památka Opatřilka-Červený lom (přibližně 1,5 km jihovýchodně od záměru), národní přírodní památka U Nového mlýna (přibližně 1,7 km jihovýchodně od záměru), přírodní památka U Hájů (přibližně 1,8 km severozápadně), přírodní památka Motolský ordovik (zhruba 2 km severně) a přírodní památka Vidoule (zhruba 1,9 km severovýchodně).

NATURA 2000

Nejbližším územím soustavy Natura 2000 je Evropsky významná lokalita (EVL) Prokopské údolí (identifikační kód lokality je CZ0110050), vzdálená od záměru přibližně 1,2 km jihovýchodně. Poloha EVL Prokopské údolí vůči zájmovému území pro realizaci záměru je vyznačena výše v obrázku C2. Záměr nebude mít na uvedené území negativní vliv.

Jiná chráněná území

V dosahu záměru a jeho možných přímých vlivů se nenachází žádné přírodní parky. Vzájemné území soustavy soustavy vodohospodářském (chráněná oblast přirozené akumulace vod - CHOPAV) podle zákona číslo 254/2001 Sb., o vodách a změně některých zákonů (vodní zákon), ve znění pozdějších předpisů. Území záměru nezasahuje ani do chráněného území vymezovaného v smyslu zákona číslo 44/1988 Sb., o ochraně nerostného bohatství, ve znění pozdějších předpisů (chráněné ložiskové území).

C.1.3. Přírodní parky

Území přírodních parků jsou z hlediska ochrany přírody a krajině plně významná ekologické a rekreační funkce. V zájmovém území chráněném pro realizaci záměru ani v dosahu jeho přímých vlivů se nenalézá žádný přírodní park. Nejbližším přírodním parkem je přírodní park Prokopské a Dalejské údolí, situovaný zhruba 1,1 km jižně od záměru a přírodní park Košíře - Motol, situovaný přibližně 1,7 km severovýchodně od záměru (viz výše uvedený obrázek C2).

Přírodní park Košíře – Motol byl vyhlášen v roce 1991 a má výměru 354 ha. Park leží na území historických parků (například rozsáhlý park Cibulka), zahrad a usedlostí v oblasti Motolského a Košířského údolí. Kromě toho jsou součástí parku i Motolské krematorium se hřbitovem, Motolské rybníky a golfové hřiště. Dominantou parku je tabulová hora Vidoule.

C.1.4. Významné krajinné prvky

Dále jsou jimi jiné části krajinny, které zaregistrována podle § 6 orgán ochrany přírody jako významný krajiný prvek, zejména mokřady, stepní trávníky, remízy, meze, trvalé travní plochy, naleziště nerostů a zkamenělin, umělé i přirozené skalní útvary, výchozy a odkryvy. Mohou jimi být i cenné plochy porostů sídelních útvarů včetně historických zahrad a parků.

V zájmovém území záměru ani v dosahu jeho přímo vlivů se nenachází žádný významný krajiný prvek „ze zákona“ dle § 3 zákona č. 114/1992 Sb., ve znění pozdějších předpisů, ani významný krajiný prvek registrovaný dle § 6 téhož zákona (viz výše uvedený obrázek C2). Nejbližším VKP je Prokopský potok, protékající přibližně 300 m severně od záměru. Do žádného významného krajiného prvku nebude realizací záměru zasahováno.

C.1.5. Území historického, kulturního nebo archeologického významu

Na plochách určených pro realizaci záměru ani v jejich blízkosti se nenacházejí žádné nemovité kulturní památky. Nejbližší nemovité kulturní památky se nacházejí přibližně 1,2 km severozápadně od území záměru. Podle dostupných údajů nejsou na plochách pro výstavbu záměru ani v jejich blízkém okolí evidovány žádné archeologické nebo historické památky.

V zájmovém území pro realizaci záměru nejsou evidovány archeologické lokality ve smyslu zákona číslo 20/1987 Sb., o státní památkové péči. V areálu budoucí výstavby nejsou známy žádné archeologické nálezy, nenachází se zde žádné archeologické stopy ani významné archeologické plochy. Nejbližší archeologická lokalita se nachází zhruba 1,5 km východně od území záměru. Objevení archeologického nálezu nelze v zájmovém území pro stavbu záměru zcela vyloučit, ale s ohledem k dřívějším stavebním pracím na lokalitě je možnost výskytu archeologických nálezů velmi málo pravděpodobná.
C.1.6. Památné stromy

V území pro realizaci záměru ani v dosahu jeho možných přímých vlivů se nenacházejí žádné památné stromy.

C.1.7. Území hustě zalidněné

Zájmové území záměru „Polyfunkční domy – Centrum Lužiny“ spadá ze správního hlediska pod městskou část Praha 13 a nalézá se v katastrálním území Stodůlky. Městská část Praha 13 se nachází v jihozápadní části hlavního města, přibližně 9 km od centra. Rozloha městské části činí 1 323 hektarů a žije zde více než 68 800 obyvatel (k 1.1. 2012). Městská část je využívána k bydlení, administrativě a službám.

Průměrná hustota zalidnění je zhruba 4 825 obyvatel/km². Hustota obyvatel v této části Prahy se nijak nevýrazně běžným hodnotám v obydlených částech hlavního města Prahy. V hlavním městě objektivně existují lokality s výrazně vyšší hustotou obyvatel (např. Nusle, Vinohrady, Černý Most nebo Prosek), ale i místa s hustotou výrazně nižší (satelitní městečka).

Zájmové území pro výstavbu záměru se nachází na sídlišti Lužiny a toto území i jeho okolí je možno je považovat, vzhledem k typu a hustotě zástavby v dotčeném území za území s relativně vysokou hustotou obyvatel. Je však třeba vést v patrnosti, že místně se hustota osidlení na území Prahy 13 velmi významně liší.

Vlastní zájmové území pro realizaci záměru není obydleno (zpevněné plochy přiléhající k objektu OC Lužiny). V blížším okolí zájmového území se nacházejí většinou obytné objekty, ale také objekty pro sport, administrativu a služby. Obytná zástavba v okolí budoucího záměru je převážně vícepodlažní (většinou budovy o více než 10 podlažích).

C.1.8. Území zatěžovaná nad míru únosného zatížení

Z hlediska kvality ovzduší (z hlediska celkové úrovne imisní zátěže) lze hodnocenou lokalitu charakterizovat v rámci Prahy jako mírně až středně zatíženou. Na základě měření kvality ovzduší na bližší stanici imisního monitoringu (ČHMÚ č. 1520 Praha 5 -Stodůlky), situované zhruba 200 metrů severně od území záměru lze konstatovat, že imisní limity všech sledovaných znečišťujících látek v ovzduší jsou v současnosti v zájmovém území záměru plněny. Benzo(a)pyren není na dotčené monitorovací stanici sledován.

Z hlediska pětiletých průměrných koncentrací sledovaných znečišťujících látek za roky 2009 – 2013 publikovaných na stránkách ČHMÚ lze rovněž dovozít, že imisní limity všech sledovaných znečišťujících látek v ovzduší jsou, s výjimkou benzo(a)pyrenu, v současnosti v zájmovém území záměru plněny.

Dle mapy klasifikace klimatu umístěné na webových stránkách hlavního města Prahy patří zájmové území do oblasti s dobrou kvalitou klimatu. Z klimatologického hlediska uvažované území nepatří k územím hlavního města Prahy s výšší náchynností k tvorbě vertikálních inverzních stavů a s rizikem kumulace znečištění v přízemních vrstvách atmosféry.
Dominantním zdrojem hluku v zájmovém území je automobilová doprava. Na základě provedeného matematického modelování počáteční akustické (hlukové) situace v zájmovém území a jednorázového (kalibračního) měření je možno hodnotit území podél odjezdových a přijezdových tras k záměru jako území s částečně zvýšenou hlukovou zátěží.

Hodnoty ekvivalentních hladin akustického tlaku (hluku) v zájmovém území pro výstavbu záměru „Polyfunkční domy – Centrum Lužiny“ a v jeho okolí byly stanoveny v rámci hlukových studií (Ekola 2013; Ekola, 2014), které jsou uvedeny v příloze číslo 5 této dokumentace. Výsledky hodnocení hlukové zátěže za stávajícího stavu jsou v tabelární formě přehledně uvedeny v kapitole dokumentace „C.2.5.1. Výpočet počáteční akustické situace“.

C.1.9. Staré ekologické zátěže

C.1.10. Extrémní poměry v dotčeném území
Území pro výstavbu záměru se nevyznačuje extrémními poměry.

C.2. Charakteristika současného stavu životního prostředí v dotčeném území
Nejvýznamnější možné vlivy výstavby a provozu záměru se předpokládají na kvalitu ovzduší a na hlukovou zátěž v zájmovém území a v jeho nejbližším okolí.

C.2.1. Ovzduší a klima

C.2.1.1. Klima
Pro obecnou charakterizaci klimatu v hlavním městě Praze lze použít dlouhodobá měření pražských meteorologických stanic. Lokalizace uvažovaných meteorologických stanic je zřejmá z následující tabulky a z níže uvedeného obrázku, ve kterém je znázorněno také zájmové území pro realizaci záměru. Vzhledem ke konfiguraci terénu a nadmořské výšce území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ se toto území svým klimatem pravděpodobně nejvíce bliží klimatickým charakteristikám meteorologické stanice Praha - Karlov.
Tabulka C1 Lokalizace vybraných meteorologických stanic

<table>
<thead>
<tr>
<th>Lokalita</th>
<th>Nadmořská výška</th>
<th>Zeměpisná šířka</th>
<th>Zeměpisná délka</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha - Karlov</td>
<td>263 m n.m.</td>
<td>50°04'</td>
<td>14°26'</td>
</tr>
<tr>
<td>Praha - Klementinum</td>
<td>197 m n.m.</td>
<td>50°05'</td>
<td>14°25'</td>
</tr>
<tr>
<td>Praha - Uhříněves</td>
<td>295 m n.m.</td>
<td>50°02'</td>
<td>14°37'</td>
</tr>
</tbody>
</table>

Podle atlasu klimatických oblastí (Quitt, 1971) je uvažovaná část Prahy řazena do klimatické oblasti T2, to znamená mírně teplé, podoblasti mírně suché a okrsku mírně teplého, mírně suchého, převážně s mírnou zimou. Podrobnější klimatické charakteristiky území Prahy jsou uvedeny v následující tabulce.

Tabulka C2 Klimatická charakteristika zájmového území T2 dle Quitta (1971)

<table>
<thead>
<tr>
<th>Charakteristika</th>
<th>Hodnota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Počet letních dnů</td>
<td>50 – 60</td>
</tr>
<tr>
<td>Počet dnů s teplotou 10°C a více</td>
<td>160 – 170</td>
</tr>
<tr>
<td>Počet mrazových dnů</td>
<td>100 – 110</td>
</tr>
<tr>
<td>Počet ledových dnů</td>
<td>30 – 40</td>
</tr>
<tr>
<td>Průměrná teplota v lednu</td>
<td>-2 až -3</td>
</tr>
<tr>
<td>Průměrná teplota v červenci</td>
<td>18 – 19</td>
</tr>
<tr>
<td>Průměrná teplota v dubnu</td>
<td>8 – 9</td>
</tr>
<tr>
<td>Průměrná teplota v říjnu</td>
<td>7 – 9</td>
</tr>
</tbody>
</table>
Charakteristika | Hodnota
--- | ---
Průměrný počet dnů se srážkami 1 mm a více | 90 – 100
Srážkový úhrn ve vegetačním období (mm) | 350 – 400
Srážkový úhrn v zimním období (mm) | 200 – 300
Počet dnů se sněhovou pokrývkou | 40 – 50
Počet dnů zamračených | 120 – 140
Počet dnů jasných | 40 – 50

Teplotní poměry v Praze

Zima bývá v Praze převážně mírná, léto teplé. Průměrná roční teplota Pražské kotliny se pohybuje mezi 8,8 °C (Podbaba) a 9,4 °C (Klementinum). Průměrná roční teplota okolní plošiny je nižší o 0,5 °C a více. Průměrné teploty vegetačního období (duben až září) se pohybují v Pražské kotlině mezi 15 °C (Podbaba) a 15,7 °C (Klementinum), na parovině Pražské plošiny jsou v průměru zhruba o půl stupně nižší.

Počet letních dnů (maximální teplota > 25 °C) do značné míry závisí na místní konfiguraci terénu a na většině území kolísá mezi 45 a 50 za rok. V nejvyšších, velmi dobře provětrávaných lokalitách jich může být i méně. Průměrná teplota nejteplejšího měsíce kolísá v nejnížších polohách údolních niv a zářezů a na výslunných svazích do 200 až 250 m n.m. kolem 19 °C, od výšky 300 m klesá pod 18 °C.

Nejnižší teplota je ve všech lokalitách dosahována v lednu. Teplota nejchladnějšího měsíce se na většině území pohybuje v rozmezí -1 až -2 °C. Dnů s mrazem je v Pražské kotlině průměrně 75,4 (Klementinum) až 87,4 (Karlov). Roční vývoj průměrných měsíčních teplot ve vybraných lokalitách je pro ilustraci uveden v následujícím grafu.

Graf C1 Průměrné měsíční teploty v Praze

Průměrné měsíční teploty v Praze

Prosinec 2014
Číslo úkolu: 2014-S-06
Počet tropických dnů s teplotou nad 30°C, letních dnů s teplotou nad 25°C, mrazových dnů s minimální teplotou ve 2 metrech nad zemí pod −0,1°C, ledových dnů s maximální teplotou ve 2 metrech nad zemí pod −0,1°C a arktických dnů s maximální denní teplotou ve dvou metrech nad zemí pod −10°C je uveden pro všechny tři lokality v tabulce C3 na následující straně.

Tabulka C3 Počet tropických, letních, mrazových, ledových a arktických dnů v Praze

<table>
<thead>
<tr>
<th>Lokalita/ kritérium</th>
<th>Tropické dny nad 30°C</th>
<th>Letní dny nad 25°C</th>
<th>Mrazové dny min. pod −0,1°C</th>
<th>Ledové dny max. pod −0,1°C</th>
<th>Arktické dny max. pod −10°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praha - Karlov</td>
<td>10,7</td>
<td>48,3</td>
<td>87,4</td>
<td>29,8</td>
<td>1,9</td>
</tr>
<tr>
<td>Praha - Klementinum</td>
<td>9,5</td>
<td>47,3</td>
<td>75,4</td>
<td>27,4</td>
<td>1,7</td>
</tr>
<tr>
<td>Praha - Uhříněves</td>
<td>11,3</td>
<td>45,8</td>
<td>103,4</td>
<td>32,3</td>
<td>2,5</td>
</tr>
</tbody>
</table>

Vlhkostní poměry v Praze

Literatura (Podnebí ČSSR – tabulky, 1961) uvádí dlouhodobou průměrnou relativní vlhkost pouze u dvou meteorologických stanic, Praha - Karlov (71 %) a Praha - Uhříněves (78 %). Maximální průměrná vlhkost vzduchu je dosahována v obou lokalitách v prosinci. V meteorologické stanici Karlov činí 83 % a ve stanici Uhříněves 89 %. Nejnižší průměrná relativní vlhkost ve stanici Praha - Uhříněves je dosahována v červenci (70 %). V Praze - Karlově je nejnižších průměrných hodnot dosahováno ve třech měsících v roce: květnu, červnu a červenci shodně 63 %. Vývoj dlouhodobé průměrné měsíční relativní vlhkosti v roce je pro obě lokality uveden v následujícím grafu.

Graf C2 Průměrná měsíční relativní vlhkost v Praze
Srážkové poměry v Praze

Území Prahy je srážkově poměrně chudé. V Pražské kotlině většinou klesá průměrný úhrn srážek pod 500 mm. Dlouhodobý roční úhrn srážek je nejvyšší v lokalitě Praha - Uhlířského (575) mm. Nejnižší průměrné měsíční srážky spadnou v únoru. Vývoj průměrného měsíčního množství srážek v roce v lokalitách Klementinum, Karlov a Uhlířského je pro ilustraci uveden v grafu C3 na následující stránce.

Graf C3 Průměrné měsíční úhrny srážek v Praze

Roční chod srážek je typicky kontinentální se značnou převahou srážek za letní měsíce a s malým množstvím srážek v zimě. Výška sněhové pokrývky je v rámci urbanizovaného území málo významná a je ovlivněna mikroklimatem města a lokálně také antropogenní činností zejména solením, dopravou a podobně.

Dlouhodobý roční průměrný počet dnů se sněhovou pokrývkou v Praze - Uhlířského je 45,7 dne, v Praze - Klementinu o více než 10 dnů méně, to znamená 32,7 dne. Sněhová pokrývka se na těchto dvou stanicích v průměru vyskytuje alespoň po několik dnů v měsíci, a to od října do dubna. Nejvíce dnů se sněhovou pokrývkou je v lednu, téměř 14,4 dne v Praze - Uhlířského a 10,9 dne v Praze - Klementinu. Dlouhodobé průměrné počty dnů se sněhovou pokrývkou v měsíci uvádí následující graf.

Sluneční svit v Praze

Průměrné trvání slunečního svitu naměřené na meteorologické stanici Praha - Karlov je uvedeno v následující tabulce

Tabulka C4 Průměrné trvání slunečního svitu - normál za období 1961 – 1990 (hodiny)

<table>
<thead>
<tr>
<th>Stanice</th>
<th>Za měsíce</th>
<th>Za rok</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Karlov</td>
<td>44,6</td>
<td>69,2</td>
</tr>
</tbody>
</table>
Graf C4 Průměrný počet dnů v měsíci se sněhovou pokrývkou v Praze

![Průměrný počet dnů v měsíci se sněhovou pokrývkou v Praze]

Sluneční svit v Praze

Průměrné trvání slunečního svitu naměřené na meteorologické stanici Praha - Karlov je uvedeno v následující tabulce

Tabulka C5 Průměrné trvání slunečního svitu - normál za období 1961 – 1990 (hodiny)

<table>
<thead>
<tr>
<th>Stanice</th>
<th>Za měsíc</th>
<th>Za rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlov</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>44,6</td>
<td>69,2</td>
<td>119</td>
</tr>
</tbody>
</table>

C.2.1.2. Klimatické faktory a rozptylové podmínky

Z klimatologických charakteristik ovlivňuje rozptylové podmínky v zájmovém území zásadním způsobem proudění vzduchu. Vlastní proudění vzduchu v zájmovém území je významně ovlivněno konfigurací terénu a místně městskou zástavbou.

Proudění vzduchu

Směr a rychlost větru jsou dominujícími meteorologickými charakteristikami, které mají rozhodující podíl na stabilitě přízemní vrstvy atmosféry a na přenosu a rozptylu cizorodých látek obsažených v ovzduší. Podílí se na difúzi lokálního měřítka při bezvětří i na přenosu škodlivin globálního charakteru. Na přenos a rozptyl emisí znečišťujících látek mají přímý vliv obě složky větru, jak směr, tak i rychlost. Přitom je zjevná rychlost proudení je výrazně proměnlivým prvkem.

Pro charakterizaci proudení vzduchu v daném území lze využít větrnou růžici, která popisuje proudění za různých rozptylových podmínek. Základním meteorologickým podkladem modelových výpočtů imisní záře byly větrné růžice charakteristické pro danou oblast, které byly zpracovány pracovníky Ústavu fyziky atmosféry AV ČR.
Větrné růžice, použité v modelu ATEM, byly rozděleny na šestnáct základních směrů proudění (S, SSV, ..., SZ, SSZ), tři třídy rychlosti větru (1,7; 5,0 a 11,0 m.s⁻¹) a pět tříd stability.

Celková podoba větrné růžice platné pro zájmové území pro výstavbu záměru „Polyfunkční domy – Centrum Lužiny“ je uvedena v následující tabulce. Graficky je celková podoba větrné růžice znázorněna v obrázku C5 na následující straně.

Tabulka C6 Celková podoba větrné růžice platné pro zájmové území

<table>
<thead>
<tr>
<th>TR</th>
<th>Směr a četnost větrů</th>
<th>CALM</th>
<th>součet</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms⁻¹</td>
<td>S</td>
<td>SSV</td>
<td>SV</td>
</tr>
<tr>
<td>1,7</td>
<td>4,97</td>
<td>4,32</td>
<td>3,69</td>
</tr>
<tr>
<td>5,0</td>
<td>0,84</td>
<td>0,48</td>
<td>0,11</td>
</tr>
<tr>
<td>11,0</td>
<td>0,24</td>
<td>0,12</td>
<td>0,01</td>
</tr>
<tr>
<td>Σ</td>
<td>6,05</td>
<td>4,92</td>
<td>3,81</td>
</tr>
</tbody>
</table>

TR - třídní rychlost větru
Calm – podíl výskytu bezvětří

Obrázek C3 Grafická podoba celkové větrné růžice

Z výše uvedené tabulky a větrné růžice je patrné, že pro lokalitu navrhovaného záměru je typické pomalé a středně rychlé proudění s velmi malým zastoupením větrů ve třídě rychlosti 11 m.s⁻¹ (2,36 % roční doby) a současně s malým zastoupením dní s bezvětřím (3,77 % roční doby).
Celkové klimatologické hodnocení

Pro hodnocení kvality životního prostředí je vhodné mít k dispozici alespoň základní souborné klimatologické hodnocení území. Takové hodnocení bylo zpracováno Českým hydrometeorologickým úřadem pro Magistrát hl. m. Prahy a zohledňuje následující základní fyzikálně-klimatologická hlediska:

- přirozené rozptylové podmínky,
- teplota v území, včetně jejího vertikálního rozložení,
- účinky slunečního záření,
- ochrana před nadměrně silným větrem a doprovodnými klimatickými faktory (nárazovitost větru, zvýšená prašnost, přívalové deště a podobně).

Výsledkem hodnocení je takzvaná mapa bonity charakteristického městského klimatu, která charakterizuje kvalitu klimatu na území Prahy v pěti kategoriích jako nejlepší, lepší, dobrou, horší a nejhorší (viz následující obrázek C4). Podle této mapy patří uvedené území do oblasti s dobrou kvalitou klimatu.

Obrázek C4 Klasifikace klimatu v zájmovém území pro výstavbu záměru „Polyfunkční domy – Centrum Lužiny“
C.2.1.3. Kvalita ovzduší

Z hlediska kvality ovzduší v zájmovém území je rozhodující dlouhodobá imisní zátěž. Klíčové je tedy především hodnocení jak jsou pro sledované znečišťující látky (oxid dusičitý, suspendované částice frakce PM
\textsubscript{10}, suspendované částice frakce PM
\textsubscript{2,5}, benzen a benzo(a)pyren) plněny platné roční imisní limity. Zrhodnocení stávající imisní situace v zájmovém území lze provést jednak na základě výsledků imisního monitoringu, jednak na základě pětiletých klouzavých průměrů koncentrací znečišťujících látek publikovaných na stránkách ČHMÚ a jednak pomocí modelových výpočtů imisních koncentrací sledovaných znečišťujících látek v ovzduší modelem ATEM (viz níže).

Imisní monitoring

Pro kvalifikovaný odhad stávajícího stavu znečištění ovzduší (imisního pozadí) v zájmovém území pro výstavbu záměru lze použít výsledky dlouhodobého sledování kvality ovzduší na stanících imisního monitoringu. Nejbližší navrhovanému záměru, ve vzdálenosti zhruba 200 metrů severně od území záměru, se nachází stanice imisního monitoringu ČHMÚ č. 1520 Praha 5 - Stodůlky. Stanice č. 1520 Praha 5 - Stodůlky je charakterizována jako pozadová městská stanice, která se nachází v zóně s částečným zastoupením obytných objektů a má poloměr reprezentativnosti 0,5 až 4,0 kilometry. Sledování znečištění ovzduší je na dotčené stanici prováděno pomocí automatizovaného měřicího programu.

Výsledky měření na stanici imisního monitoringu č. 1520 Praha 5 - Stodůlky v letech 2009 až 2013 shrnuje následující tabulka (verifikované výsledky monitoringu za rok 2014 nebyly v době zpracování dokumentace k dispozici). Vzhledem k blízké poloze stanice imisního monitoringu vůči území záměru a charakteru stanice je možné výsledky monitoringu na této stanici považovat za reprezentativní a použít ke zhodnocení reálné kvality ovzduší v jejím širším okolí, včetně území záměru.

Tabulka C7 Výsledky měření koncentrací charakteristických znečišťujících látek na stanici imisního monitoringu Praha 5 - Stodůlky (2009 – 2013)

<table>
<thead>
<tr>
<th>Kód / název</th>
<th>ASTOA / Praha 5 - Stodůlky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Látka</td>
<td>Rok</td>
</tr>
<tr>
<td>NO\textsubscript{2}</td>
<td>1 hod (19. nejv. h.*)</td>
</tr>
<tr>
<td>PM\textsubscript{2,5}</td>
<td>1 rok</td>
</tr>
<tr>
<td>PM\textsubscript{10}</td>
<td>24 hod (36 nejv. h.*)</td>
</tr>
<tr>
<td></td>
<td>24 hod – četnost překročení</td>
</tr>
<tr>
<td></td>
<td>1 rok</td>
</tr>
</tbody>
</table>

* Limity jsou uvedeny dle zákona č. 201/2012 Sb., o ochraně ovzduší. V případě PM\textsubscript{10}, respektive NO\textsubscript{2} jsou legislativou tolerováno nejvýše 35 překročení denního limitu, respektive 18 překročení hodinového limitu. Pro vyhodnocení se proto uvádí u PM\textsubscript{10} 36. nevyšší hodnota (tolerováno je 35 překročení) a u NO\textsubscript{2} 19. nejvyšší hodnota (tolerováno je 18 překročení).
Z rozboru výsledků sledování kvality ovzduší na stanici ČHMÚ č. 1520 Praha 5 - Stodůlky v letech 2009 až 2013 lze učinit následující závěry:

- Hodnoty 19. nejvyšší hodinové koncentrace oxidu dusičitého (NO₂) dosahovaly úrovně 87,6 až 105,2 µg.m⁻³. Imisní limit byl v průběhu hodnoceného období plněn s dostatečnou rezervou.

- Průměrné roční koncentrace NO₂ se pohybovaly v rozmezí 23,8 – 26,0 µg.m⁻³. I v tomto případě byl imisní limit plněn s dostatečnou rezervou.

- Hodnoty 36. nejvyšší denní koncentrace PM₁₀ se pohybovaly v rozpětí od 38,0 do 49,7 µg.m⁻³. V průběhu hodnoceného období byl plněn imisní limit pro denní koncentrace suspendovaných částic frakce PM₁₀. V roce 2011 se denní koncentrace PM₁₀ pohybovaly na hranici imisního limitu.

- Hodnoty průměrných ročních koncentrací suspendovaných částic frakce PM₁₀ se pohybovaly s rezervou pod úrovní platného imisního limitu v rozmezí od 21,8 do 26,5 µg.m⁻³.

- Průměrné roční koncentrace suspendovaných částic frakce PM₂,5 se pohybovaly v rozmezí 10,4 – 18,4 µg.m⁻³, imisní limit byl dodržen.

Na základě výše uvedených hodnot z imisního monitoringu lze shrnout, že na blízké stanici imisního monitoringu nebylo ve výše uvedených letech zaznamenáno překročení imisního limitu u žádné ze sledovaných znečišťujících látek v ovzduší. V roce 2011 se denní koncentrace PM₁₀ pohybovaly na hranici imisního limitu.

Pětileté klouzavé průměry koncentrací znečišťujících látek

Pro vyhodnocení imisní situace (imisního pozadí) dle zákona č. 201/2012 Sb. byly použity pětileté průměry koncentrací znečišťujících látek (od roku 2009 do roku 2013) publikované na stránkách ČHMÚ. Území republiky je rozděleno na čtverce s rozměrem 1 × 1 km a v každém z nich jsou stanoveny průměrné pětileté koncentrace pro relevantní znečišťující látky v ovzduší. Záměr se nachází ve čtverci 452546. Pětileté průměry ve sledovaném čtverci za roky 2009 – 2013 ukazuje niže uvedená tabulka.

Tabulka C8 Hodnoty pětiletých průměrů koncentrací zaznamenané ve čtverci č. 452546

<table>
<thead>
<tr>
<th>Znečišťující látka</th>
<th>Veličina</th>
<th>Hodnota</th>
<th>Jednotka</th>
<th>Podíl limitu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsen</td>
<td>roční průměr</td>
<td>3,34</td>
<td>ng.m⁻³</td>
<td>56</td>
</tr>
<tr>
<td>Kadnium</td>
<td>roční průměr</td>
<td>0,30</td>
<td>ng.m⁻³</td>
<td>6</td>
</tr>
<tr>
<td>Olovo</td>
<td>roční průměr</td>
<td>9,50</td>
<td>ng.m⁻³</td>
<td>2</td>
</tr>
<tr>
<td>Nikl</td>
<td>roční průměr</td>
<td>1,40</td>
<td>ng.m⁻³</td>
<td>7</td>
</tr>
<tr>
<td>Oxid siřičitý</td>
<td>4. nejv. denní průměr</td>
<td>21,40</td>
<td>µg.m⁻³</td>
<td>17</td>
</tr>
<tr>
<td>Částice PM₁₀</td>
<td>36. nejv. denní průměr</td>
<td>46,40</td>
<td>µg.m⁻³</td>
<td>93</td>
</tr>
<tr>
<td>Částice PM₁₀</td>
<td>roční průměr</td>
<td>26,20</td>
<td>µg.m⁻³</td>
<td>66</td>
</tr>
<tr>
<td>Částice PM₂,5</td>
<td>roční průměr</td>
<td>18,40</td>
<td>µg.m⁻³</td>
<td>74</td>
</tr>
<tr>
<td>Benzen</td>
<td>roční průměr</td>
<td>1,10</td>
<td>µg.m⁻³</td>
<td>22</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>roční průměr</td>
<td>1,25</td>
<td>ng.m⁻³</td>
<td>125</td>
</tr>
<tr>
<td>Oxid dusičitý</td>
<td>roční průměr</td>
<td>26,00</td>
<td>µg.m⁻³</td>
<td>65</td>
</tr>
</tbody>
</table>
Z výše uvedené charakteristiky lze dovodit, že imisní limity pro průměrné roční koncentrace všech látek, s výjimkou benzo(a)pyrenu, jsou v dlouhoobdobém průměru v zájmovém území splněny. Jedinou problematickou látkou je benzo(a)pyren v suspendovaných částicích frakce PM$_{10}$, který podle uvedeného hodnocení překračuje limit o 25%. Tato situace je typická pro většinu území hl. m. Prahy i dalších větších měst.

Matematické modelování kvality ovzduší modelem ATEM

Úroveň znečištění ovzduší v dané lokalitě je možné vyhodnotit na také základě projektu „Modelové hodnocení kvality ovzduší na území hl. m. Prahy“, který hodnotí znečištění ovzduší na území města v pravidelných dvouletých aktualizacích. V případě benzo(a)pyrenu nejsou údaje o imisním pozadí k dispozici. V následujícím textu jsou uvedeny výsledky hodnocení dle poslední aktualizace z roku 2014 z hlediska sledovaných znečišťujících látek: oxidu dusičitého (NO$_2$), suspendovaných částic frakce PM$_{10}$, suspendovaných částic frakce PM$_{2.5}$ a benzenu.

V blízkém okolí plánovaného záměru stavby se nachází 6 referenčních bodů pravidelné trojúhelníkové sítě, další bod se nachází v středu posuzovaného areálu. Imisní zátěž byla vyhodnocena pro následujících sedm bodů:

- RB 6235 – plocha v blízkosti Kolovečské ulice
- RB 6236 – oblast v blízkosti křížení Jeremiášovy a Červeňanského ulice
- RB 6346 – plocha sídliště mezi Amforovou, Brdičkovou a Podpěrovou ulicí
- RB 6347 – plocha stávajícího obchodního domu ve středu navrhovaných objektů
- RB 6348 – oblast v blízkosti křížení Archeologické a Jeremiášovy ulice
- RB 6457 – plocha sídliště mezi Archeologickou a Bronzovou ulicí
- RB 6458 – plocha sídliště mezi Archeologickou a Zázvorkovou ulicí

V rámci projektu „Modelové hodnocení kvality ovzduší na území hl. m. Prahy“ byly v zájmovém území záměru a jeho okolí vypočteny průměrné roční koncentrace sledovaných látek uvedené v následující tabulce.

Tabulka C9 Průměrné roční koncentrace v referenčních bodech dle Aktualizace 2014 (µg.m$^{-3}$)

<table>
<thead>
<tr>
<th>Bod</th>
<th>Oxid sířičitý</th>
<th>Oxid dusičitý</th>
<th>Částice PM$_{10}$</th>
<th>Částice PM$_{2.5}$</th>
<th>Benzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6235</td>
<td>3,5</td>
<td>22,8</td>
<td>25,5</td>
<td>13,9</td>
<td>0,5</td>
</tr>
<tr>
<td>6236</td>
<td>3,2</td>
<td>22,4</td>
<td>25,3</td>
<td>13,9</td>
<td>0,5</td>
</tr>
<tr>
<td>6346</td>
<td>3,5</td>
<td>22,2</td>
<td>25,3</td>
<td>13,8</td>
<td>0,5</td>
</tr>
<tr>
<td>6347</td>
<td>3,1</td>
<td>22,6</td>
<td>24,9</td>
<td>13,6</td>
<td>0,5</td>
</tr>
<tr>
<td>6348</td>
<td>2,9</td>
<td>23,0</td>
<td>25,0</td>
<td>13,8</td>
<td>0,5</td>
</tr>
<tr>
<td>6457</td>
<td>3,0</td>
<td>21,8</td>
<td>24,6</td>
<td>13,4</td>
<td>0,5</td>
</tr>
<tr>
<td>6458</td>
<td>2,8</td>
<td>22,2</td>
<td>24,4</td>
<td>13,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Limit</td>
<td>nestanoven</td>
<td>40</td>
<td>40</td>
<td>25</td>
<td>5</td>
</tr>
</tbody>
</table>

Prosinec 2014
Číslo úkolu: 2014-S-06
Imisní situaci lze z hlediska průměrných ročních koncentrací sledovaných znečišťujících látek hodnotit následovně:

- Průměrné roční koncentrace oxidu dusičitého ve vybraných referenčních bodech dosahují 54 až 57 % imisního limitu a hodnotu imisního limitu nepřekračují. V prostoru navrhovaného záměru se hodnoty pohybují okolo 56 % imisního limitu.
- Průměrné roční koncentrace suspendovaných částic frakce PM$_{10}$ hodnotu imisního limitu nepřekračují – byly vypočteny v rozmezí od 61 do 64 % limitu. V místě výstavby lze zaznamenat hodnoty na úrovni 62 % limitu.
- Průměrné roční koncentrace suspendovaných částic PM$_{2,5}$ se pohybují od 54 % do 56 % imisního limitu. V prostoru záměru jsou patrné hodnoty okolo 55 % limitu, překročení nebylo zaznamenáno v žádné části zájmového území.
- V případě benzenu se vypočtené hodnoty nacházejí v intervalu mezi 9 až 11 % imisního limitu.

V rámci projektu „Modelové hodnocení kvality ovzduší na území hl. m. Prahy“ byly v zájmovém území záměru a jeho okolí vypočteny níže uvedené hodnoty maximálních krátkodobých koncentrací.

Tabulka C10 Maximální krátkodobé koncentrace v referenčních bodech dle Aktualizace 2014

<table>
<thead>
<tr>
<th>Bod</th>
<th>Oxid sířičitý</th>
<th>Oxid dusičitý</th>
<th>Částice PM$_{10}$</th>
<th>Benzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IH$_{k}$ (µg.m$^{-3}$) Pre (%)</td>
<td>IH$_{k}$ (µg.m$^{-3}$) Pre (%)</td>
<td>IH$_{k}$ (µg.m$^{-3}$) Pre (%)</td>
<td>IH$_{k}$ (µg.m$^{-3}$)</td>
</tr>
<tr>
<td>6235</td>
<td>43,5 –</td>
<td>141,9 –</td>
<td>153,5 6,8</td>
<td>4,0</td>
</tr>
<tr>
<td>6236</td>
<td>37,1 –</td>
<td>137,1 –</td>
<td>154,0 6,6</td>
<td>3,6</td>
</tr>
<tr>
<td>6346</td>
<td>41,4 –</td>
<td>142,0 –</td>
<td>167,6 6,6</td>
<td>3,4</td>
</tr>
<tr>
<td>6347</td>
<td>34,8 –</td>
<td>140,6 –</td>
<td>150,6 6,3</td>
<td>2,9</td>
</tr>
<tr>
<td>6348</td>
<td>30,9 –</td>
<td>134,7 –</td>
<td>150,1 6,3</td>
<td>2,9</td>
</tr>
<tr>
<td>6457</td>
<td>31,2 –</td>
<td>132,6 –</td>
<td>156,0 6,0</td>
<td>2,6</td>
</tr>
<tr>
<td>6458</td>
<td>29,1 –</td>
<td>137,7 –</td>
<td>149,7 5,8</td>
<td>2,6</td>
</tr>
<tr>
<td>LV</td>
<td>350 0,3</td>
<td>200 0,2</td>
<td>50 9,6</td>
<td>nestanoven</td>
</tr>
</tbody>
</table>

Vysvětlivky:

IH$_{k}$............. maximální hodinové koncentrace znečišťující látky (µg.m$^{-3}$)

IH$_{d}$............. maximální 24hodinové koncentrace znečišťující látky (µg.m$^{-3}$)

Pre............. doba překročení krátkodobého imisního limitu

Hodnoty maximálních krátkodobých koncentrací jsou pouze doplňkovou informací o kvalitě ovzduší. Jsou vypočteny pro nejhorší emisní a rozptylovou situaci a v daném roce nemusí být vypočtených hodnot vůbec dosaženo. Imisní situaci lze z hlediska krátkodobých koncentrací sledovaných znečišťujících látek hodnotit následovně:

- Vypočtené maximální hodinové koncentrace oxidu dusičitého ve vybraných referenčních bodech dosahují 66 až 71 % imisního limitu, splňují tedy stanovený limit.
- Modelové maximální denní koncentrace suspendovaných prachových částic frakce PM$_{10}$ lze zaznamenat v rozmezí 149,7 – 167,6 µg.m$^{-3}$. Vypočtená hodnota představuje pravděpodobnou nejvyšší různě v místě a nelze ji s limitem přímo srovnávat.

Prosincec 2014
Číslo úkolu: 2014-S-06
O splnění limitu vypovidá ukazatel počtu překročení limitu denních koncentrací v průběhu roku. Ten je limitován počtem 35 dní za rok (9,6 % roční doby). Překročení bylo vypočteno v rozmězi od 5,8 do 6,8 % roční doby, to znamená, že překročení imisního limitu přes povolený počet dní nebylo v území zaznamenáno.

- Maximální hodinové koncentrace benzenu se pohybují ve vybraných referenčních bodech v rozmězi 2,6 – 4,0 µg.m⁻³. Imisní limit pro tuto veličinu není stanoven.

Na základě uvedených výsledků modelových výpočtů provedených v rámci studie „Modelové hodnocení kvality ovzduší na území hl. m. Prahy“ (aktualizace 2014) je možno místo pro výstavbu záměru a jeho okolí hodnotit jako imisně mírně až středně zatížené. V místě plánovaného záměru jsou splněny imisní limity všech sledovaných látek.

C.2.2. Voda

Hydrograficky přísluší zájmové území pro realizaci záměru k povodí Labe 4-00-00 a jeho dílčímu povodí číslo 1-12-01 Vltava od Berounky po Rokytku. Podle detailnějšího členění se posuzovaná lokalita nachází v hydrologickém povodí číslo 1-12-01-011 Stodůlecký potok – Dalejský potok pod Stodůleckým potokem. Dalejský potok, který je levostranným přítokem Vltavy, protéká v generelním směru od západu k východu ve vzdálenosti přibližně 1,3 km jižně od hránice zájmového území. Prokopský potok, který tvoří levostranný přítok Dalejského potoka, protéká v generelním směru od západu k východu zhruba 300 m severně od hránice zájmového území.

Dalejský ani Prokopský potok nejsou uvedeny na seznamu významných vodních toků ve smyslu vyhlášky Ministerstva zemědělství č. 178/2012 Sb., kterou se stanoví seznam významných vodních toků a způsob provádění činností souvisejících se správou vodních toků. Vodoteč nebude přímým recipientem vypouštěných odpadních vod ze záměru.

Vlastní hodnocené území je suché, neprotéká jím žádný trvalý ani občasný povrchový tok a nenachází se na něm ani žádná vodní plocha, prameniště či mokřad. Zájmové území pro realizaci záměru se nenachází v ochranném pásmu vodního zdroje ani v manipulačním prostoru vodního toku. Dle map zátopových území, která byla stanovena územním plánem hlavního města Prahy, neleží zájmové území pro výstavbu záměru „Polyfunkční domy – Centrum Lužiny“ ve vyhlášeném inundačním (zátopovém) území vodních toků nebo v území určeném k rozlivu povodní.

C.2.3. Půda

V širším území záměru je možno nalézt pouze níže popsané dva půdní typy. Převažujícím půdním typem jsou v současnosti antropogenní půdy, které jsou tvořeny navážkami uloženými v průběhu výstavby metra a během terénních úprav po dokončení stavby OB Lužiny. Primárními půdami v dotčeném území byly kambizem, které se v současnosti vyskytují na okrajích zájmového území nebo jsou zachovány ve fragmentech v plochách zeleně.

Antropogenní půda - Antrozem (An)

Kambizem - KM (hnědá půda)

Kambizem jsou nejrozšířenějším půdním typem na území České republiky. Typický je proces hnědnutí - zvětrávání a metamorfóza půdního materiálu in situ. Dochází k uvolňování železa z primárních minerálů a k tvorbě sekundárních jílových minerálů, avšak bez jejich translací. Tak se vytváří pro kambizem typický horizont. Intenzita zvětrávání závisí na mineralogickém složení substrátu a hydrotermických podmínkách půdního prostředí. Při procesu hnědnutí se uvolňují dvojmocné kationy, které jsou vyluhovány do nižších vrstev.

Kvalita půd a základní fyzikální, chemické a biologické vlastnosti jsou velmi rozdílné, v závislosti na substrátu. Kambizem mají nejvíce subtypů, často charakterizujících přechodové formy k dalším půdním typům. Nejčastěji se vyskytují ve subtypu typická, dystrická a pseudoglejová.

Znečištění půd

V zájmovém území byly v minulosti provedeny rozsáhlé zemiální práce v souvislosti s výstavbou metra a Obchodního centra Lužiny a souvisejících zpevněných ploch. Během stavby byly kambizem z části vyplněny navážkami (zejména původním materiálem z výkopů a stavební sutí). Vzhledem k tomu, že přesné složení navážek není známo, nelze zcela vyloučit jejich lokální kontaminaci. Obecně se však žádná významná kontaminace zemí nepředpokládá. V zájmovém území pro realizaci záměru nebyly až dosud evidovány žádné staré ekologické zátěže (Systém evidence kontaminovaných míst, CENIA).
Nelze také zcela vyloučit lokální přípovrchovou kontaminaci zemin v blízkosti komunikací a parkoviště zejména ropnými látkami a PAU (polycyklickými aromatickými uhlovodíky), které vznikají například při nedokonalém spalování paliva. Jedná se však o běžné znečištění v okolí frekventovaných komunikací, kdy obsahy výše zmíněných látek mohou mírně překročit koncentrace, charakteristické pro přirozené prostředí. Významnou kontaminaci zemin ovšem nelze očekávat.

C.2.4. Horninové prostředí a přírodní zdroje

C.2.4.1. Horninové prostředí

Geomorfologické poměry

Dle geomorfologického členění České republiky patří zájmové území k Hercynskému systému, provincii Česká vysočina, subprovincii Poberounská soustava, Brdské oblasti, celku Pražská plošina, podcelku Říčanská plošina, okrsku Třebotovská plošina. Třebotovská plošina je členitou pahorkatinou se strukturními hřbety a suky a epigeneticky založenými údolími přítoků Vltavy a Berounky. Zájmové území leží v prostoru denudační strukturní plošiny, která západním směrem navazuje na snížený parovinný reliéf středočeské paleogenní paroviny.

Poměrně jednotvárný vzhled současného reliéfu je dotvořen kvartérní, převážně eolickou a deluviální sedimentací, která do značné míry zarovnala starý členitější parovinný reliéf tvořený horninami spodního paleozoika s místy zachovanými svrchnokřídlovými sedimenty. V širším zájmovém území erozně zasahují do výchozí paroviny levobřežní přítoky Vltavy (Prokopský a Dalejský potok). Původní morfologické poměry lokality a jejího okolí byly značně pozměněny činností člověka. Povrch lokality byl v minulosti upraven navážkami. Povrch zájmového území se mírně svažuje směrem od jihozápadu k severovýchodu. Nadmořská výška lokality se pohybuje v rozmezí přibližně 327 až 337 m metrů nad mořem.

Geologické poměry

Skalní podloží zájmového území je tvořeno horninami svrchního ordoviku, které jsou zde zastoupeny jílovitými břidlicemi bohdaleckých vrstev a siltovými až písčitovápnitými břidlicemi záhořanského souvrství. Bohdalecké břidlice jsou jílovité, tence vrstvené a rozpadají se v nepravidelné střípky. Jsou poměrně měkké, provrásněné a tektonicky porušené, nepravidelně a hluboko zvětrávající.

Skalní podloží překrývají v zájmovém území pro realizaci záměru kvartérní uloženiny, zastoupené eolickými a deluviálními sedimenty. Eolické sedimenty jsou tvořeny sprašemi a sprašovými hlínami o mocnosti zhruba 3 m. Deluviální sedimenty jsou produktem zvětrání hornin a jsou tvořeny jíly a hlínami s úlomky hornin. Jejich mocnost se pohybuje v rozpětí 2 až 6 m. Povrch území je tvořen různě mocnými vrstvami antropogenních navážek, které tvoří v zájmovém území pro výstavbu záměru významný pokryvný útvar. Půdní horizont nad navážkami, má charakter humózní písčito-jílovité hlíny a dosahuje mocnosti pouze 0,1 až 0,2 m.
Hydrogeologické poměry

Z hydrogeologického hlediska je širší zájmové území součástí rajónu číslo 62 krystalinikum, proterozoikum a paleozoikum západních Čech, subrajonu 625 proterozoikum a paleozoikum v povodí přítoků Vltavy (Olmer M., Kesl J. a kol., 1990). Zvodnění je vázáno na průlinové prostředí kvartérních uložení a rozrušenou přípovrchovou část skalního podloží, hlouběji komunikuje s puklinovým systémem ordovických břidlic.

Hydrogeologické poměry jsou, s ohledem na stavební činnost v minulosti, komplikované. Nezvětralé jílovité břidlice skalního podloží jsou pro vodu prakticky nepropustné, podzemní voda bude vázána převážně na puklinové prostředí břidlic. Lze předpokládat kolektor podzemní vody ve vrstvách kvartérních sedimentů a ve zvětralé zóně skalního podkladu. Ve vrstvách kvartérních uložení se mohou vyskytovat lokální zvětralé podzemní vody pod povrchem terénu. Hydrogeologické poměry zájmového území se odvíjejí od poměrů geologických a jsou závislé na místní geologické stavbě, to znamená na charakteru propustnosti horninového prostředí, dále na morfologii terénu, možných zdrojích podzemních vod a také na antropogenních vlivech. V zájmovém území a v jeho okolí mohou být hydrogeologické poměry ovlivněny třelsem metra.

C.2.4.2. Seismické poměry

Podle ČSN 73 0036 se zájmové území nachází ve vymezené seizmické oblasti, v níž lze očekávat otřesy s makroskopickou intenzitou menší než 5 dle stupnice MSK-64. Podle ČSN P ENV 1998-1-1 spadá zájmové území do seizmické zóny II.

C.2.4.3. Přírodní zdroje

V posuzovaném území se nenacházejí žádné přírodní zdroje. Stavba se nenalézá v chráněném ložiskovém území ani v oblasti jiných surovinových či přírodních zdrojů.

C.2.5. Hluk - počáteční akustická situace

C.2.5.1. Výpočet počáteční akustické situace

Počáteční akustická situace (PAS) v zájmovém území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ a v jeho okolí byla stanovena matematickým modelováním (podrobnosti o použitém software jsou uvedeny v kapitole dokumentace „D.I.3.2. Programové vybavení pro výpočty hluku“). Akustická situace v zájmovém území záměru byla zjištěna ve třech vybraných měřicích (kontrolních) bodech také měřením - viz kapitola dokumentace „C.2.5.2. Měření a ověření výpočtového modelu“.

Vypočtené ekvivalentní hladiny akustického tlaku A (hluku) ze silniční dopravy (samostatně z dopravy na komunikacích III. třídy a samostatně z dopravy na komunikacích I. a II. třídy) jsou pro stav počáteční akustické situace uvedeny v následujících dvou tabulkách. S ohledem na vstupní údaje o dopravě je výpočet proveden z hlediska posouzení vlivů záměru na hlukovou situaci na straně jistoty.

Hluk z provozu silniční dopravy na komunikacích III. třídy

V následující tabulce jsou uvedeny vypočtené ekvivalentní hladiny akustického tlaku A (hluku) pro počáteční akustickou situaci pro hluk z dopravy na komunikacích III. třídy v zájmovém území pro realizaci záměru.

Tabulka C11 Vypočtené hodnoty ekvivalentních hladin akustického tlaku A L_{Aeq,T} - počáteční akustická situace, hluk z dopravy na komunikacích III. třídy

<table>
<thead>
<tr>
<th>Výpočtový bod</th>
<th>Výška nad terénem (m)</th>
<th>Vypočtená hodnota L_{Aeq,T} (dB)</th>
<th>Hygienický limit pro komunikace III. třídy (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Den</td>
<td>Noc</td>
</tr>
<tr>
<td>M1</td>
<td>13,5</td>
<td>51,9</td>
<td>42,6</td>
</tr>
<tr>
<td>M2</td>
<td>2,5</td>
<td>55,5</td>
<td>55,8</td>
</tr>
<tr>
<td>V01</td>
<td>4,5</td>
<td>54,0</td>
<td>44,1</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>52,5</td>
<td>42,7</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,8</td>
<td>41,0</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,8</td>
<td>40,0</td>
</tr>
<tr>
<td>V02</td>
<td>4,5</td>
<td>53,8</td>
<td>43,9</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>51,9</td>
<td>42,1</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,2</td>
<td>40,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,4</td>
<td>39,6</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>50,3</td>
<td>40,6</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>51,6</td>
<td>41,9</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>50,9</td>
<td>41,2</td>
</tr>
<tr>
<td>V04</td>
<td>4,5</td>
<td>52,4</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>50,0</td>
<td>40,3</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>44,8</td>
<td>35,0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V06</td>
<td>4,5</td>
<td>52,9</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>52,2</td>
<td>42,5</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,6</td>
<td>40,8</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,7</td>
<td>39,9</td>
</tr>
<tr>
<td>V07</td>
<td>4,5</td>
<td>55,3</td>
<td>45,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>51,9</td>
<td>42,2</td>
</tr>
<tr>
<td>V08</td>
<td>10,5</td>
<td>43,9</td>
<td>34,2</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>45,4</td>
<td>35,6</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>45,0</td>
<td>35,2</td>
</tr>
<tr>
<td>V15</td>
<td>29,0</td>
<td>46,6</td>
<td>37,3</td>
</tr>
<tr>
<td></td>
<td>47,0</td>
<td>44,3</td>
<td>35,0</td>
</tr>
<tr>
<td>V17</td>
<td>7,5</td>
<td>51,2</td>
<td>41,9</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>51,3</td>
<td>42,0</td>
</tr>
<tr>
<td>V18</td>
<td>13,5</td>
<td>56,4</td>
<td>47,1</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>54,4</td>
<td>45,1</td>
</tr>
<tr>
<td>V19</td>
<td>7,5</td>
<td>49,8</td>
<td>40,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>51,2</td>
<td>41,9</td>
</tr>
<tr>
<td>V20</td>
<td>4,5</td>
<td>51,3</td>
<td>41,9</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>53,3</td>
<td>43,9</td>
</tr>
</tbody>
</table>
Výpočtový bod | Výška nad terénem (m) | Vypočtená hodnota $L_{Aeq,T}$ (dB) | Hygienický limit pro komunikace III. třídy (dB) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den / Noc</td>
</tr>
<tr>
<td>V21</td>
<td>34,5</td>
<td>52,8</td>
<td>43,4</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>48,9</td>
<td>39,4</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>51,3</td>
<td>41,9</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>51,1</td>
<td>41,6</td>
</tr>
<tr>
<td>V22</td>
<td>4,5</td>
<td>49,9</td>
<td>40,3</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>53,4</td>
<td>43,9</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>53,0</td>
<td>43,5</td>
</tr>
<tr>
<td>V23</td>
<td>4,5</td>
<td>49,6</td>
<td>40,1</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>52,0</td>
<td>42,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>51,6</td>
<td>42,0</td>
</tr>
<tr>
<td>V24</td>
<td>10,5</td>
<td>52,6</td>
<td>42,8</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>47,7</td>
<td>37,9</td>
</tr>
<tr>
<td>V26</td>
<td>10,5</td>
<td>42,6</td>
<td>32,9</td>
</tr>
<tr>
<td>V27</td>
<td>4,5</td>
<td>46,0</td>
<td>37,2</td>
</tr>
<tr>
<td>V28</td>
<td>10,5</td>
<td>52,5</td>
<td>43,7</td>
</tr>
<tr>
<td>V29</td>
<td>10,5</td>
<td>47,6</td>
<td>38,8</td>
</tr>
<tr>
<td>V30</td>
<td>10,5</td>
<td>42,7</td>
<td>33,9</td>
</tr>
</tbody>
</table>

Poznámka:
* Stavební objekty, které nemají chráněný venkovní prostor staveb. V případě překročení hygienického limitu hluku je hodnota v tabulce zvýrazněna tučným písmem.

Vyhodnocení

Vypočtené hodnoty hluku z provozu silniční dopravy na komunikacích III. třídy se v zájmovém území záměru a v jeho okolí pohybují v denní době v rozmezí od $L_{Aeq,16h} = 42,6$ dB do $L_{Aeq,16h} = 56,4$ dB a v noční době od $L_{Aeq,8h} = 32,9$ dB do $L_{Aeq,8h} = 47,1$ dB. Ve všech kontrolních výpočtových bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Ve výpočtových bodech M2, V07 (pouze v noční době) a V18 je překročen hygienický limit pro hluk z provozu dopravy na komunikacích III. třídy 55/45 dB (den/noc). Hlukové mapy jsou uvedeny v přílohové části hlukové studie, která je v plném rozsahu uvedena v příloze číslo 5 dokumentace.

Hluk z provozu silniční dopravy na komunikacích I. a II. třídy

V následující tabulce jsou uvedeny vypočtené ekvivalentní hladiny akustického tlaku A pro počáteční akustickou situaci pro hluk z provozu dopravy na komunikacích I. třídy, to znamená pro hluk z dopravy na komunikacích Jeremiášova a Mukařovského.

Tabulka C12 Vypočtené hodnoty ekvivalentních hladin akustického tlaku $A_{L_{Aeq,T}}$ - počáteční akustická situace, hluk z dopravy na komunikacích I. a II. třídy

<table>
<thead>
<tr>
<th>Výpočtový bod</th>
<th>Výška nad terénem (m)</th>
<th>Vypočtená hodnota $L_{Aeq,T}$ (dB)</th>
<th>Hygienický limit pro komunikace I. a II. třídy (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den / Noc</td>
</tr>
<tr>
<td>M3</td>
<td>9,7</td>
<td>64,3</td>
<td>58,4</td>
</tr>
<tr>
<td>V07</td>
<td>4,5</td>
<td>42,7</td>
<td>36,0</td>
</tr>
<tr>
<td>V08</td>
<td>35,7</td>
<td>45,7</td>
<td>39,0</td>
</tr>
<tr>
<td>V09</td>
<td>10,5</td>
<td>54,1</td>
<td>47,3</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>55,3</td>
<td>48,5</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>55,4</td>
<td>48,6</td>
</tr>
<tr>
<td>V09</td>
<td>7,5</td>
<td>54,5</td>
<td>47,7</td>
</tr>
<tr>
<td></td>
<td>22,5</td>
<td>56,5</td>
<td>49,7</td>
</tr>
<tr>
<td>Výpočtový bod</td>
<td>Výška nad terénem (m)</td>
<td>Vypočtená hodnota $L_{Aeq,T}$ (dB)</td>
<td>Hygienický limit pro komunikace I. a II. třídy (dB)</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den / Noc</td>
</tr>
<tr>
<td>V10</td>
<td>4,5</td>
<td>53,7</td>
<td>46,8 70/60</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>56,4</td>
<td>49,5 70/60</td>
</tr>
<tr>
<td>V11</td>
<td>4,5</td>
<td>52,9</td>
<td>46,9 70/60</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>56,2</td>
<td>50,2 70/60</td>
</tr>
<tr>
<td>V12</td>
<td>4,5</td>
<td>57,4</td>
<td>51,6 70/60</td>
</tr>
<tr>
<td>V13</td>
<td>1,5</td>
<td>59,0</td>
<td>53,2 70/60</td>
</tr>
<tr>
<td>V14</td>
<td>6,5</td>
<td>54,6</td>
<td>48,8 70 / v noci není užíván</td>
</tr>
<tr>
<td>V15</td>
<td>29,0</td>
<td>64,4</td>
<td>58,5 70/60</td>
</tr>
<tr>
<td></td>
<td>47,0</td>
<td>62,6</td>
<td>56,8 70/60</td>
</tr>
<tr>
<td>V16</td>
<td>1,5</td>
<td>60,8</td>
<td>55,0 70/60</td>
</tr>
<tr>
<td>V17</td>
<td>7,5</td>
<td>52,1</td>
<td>46,3 70/60</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>55,8</td>
<td>49,9 70/60</td>
</tr>
<tr>
<td>V18</td>
<td>13,5</td>
<td>48,9</td>
<td>43,0 70/60</td>
</tr>
<tr>
<td>V19</td>
<td>34,5</td>
<td>51,5</td>
<td>45,6 70/60</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>43,2</td>
<td>37,4 *</td>
</tr>
</tbody>
</table>

Poznámka:
* Stavební objekty, které nemají chráněný venkovní prostor staveb.
V případě překročení hygienického limitu hluku by byla hodnota v tabulce zvýrazněna tučným písmem.

Vyhodnocení

Vypočtené hodnoty ekvivalentních hladin akustického tlaku A (hluku) z provozu silniční dopravy na komunikacích I. třídy se v zájmovém území pro realizaci záměru a v jeho okolí pohybují v denní době v rozmezí od $L_{Aeq,16h} = 42,7$ do $L_{Aeq,16h} = 64,4$ dB a v noční době od $L_{Aeq,8h} = 36,0$ dB do $L_{Aeq,8h} = 58,5$ dB. Ve všech kontrolních výpočtových bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž.

C.2.5.2. Měření akustické situace a ověření výpočtového modelu

Současně s probíhajícím měřením hluku bylo v profilech měřicích míst prováděno sčítání intenzit dopravy v době měření (komunikace Archeologická a Jeremiášova). Protokol z měření je součástí akustických studií a je stejně jako hlukové studie uvezen v příloze dokumentace číslo 5. Graficky jsou měřicí body a profily sčítání intenzit dopravy znázorněny na následujícím obrázku.
Místo měření M1 bylo umístěno ve vzdálenosti 2,0 m od fasády bytového domu č. p. 1976/1 v ulici Böhmova ve vzdálenosti zhruba 36,8 m od nejbližší osy jízdního pruhu komunikace Archeologická ve výšce 13,5 m nad terénem. Místo měření M2 bylo situováno ve vzdálenosti 2,0 m od fasády bytového domu č. p. 1881/8 v ulici Archeologická, ve vzdálenosti přibližně 16,6 m od nejbližší osy jízdního pruhu ve výšce 9,7 m nad terénem.

Místo měření M3 bylo situováno ve vzdálenosti 2,0 m od fasády bytového domu č. p. 2722/2a v ulici Jeremiášova, ve vzdálenosti zhruba 19,0 m od nejbližší osy jízdního pruhu ve výšce 2,5 m nad chodníkem.

V následující tabulce jsou uvedeny naměřené ekvivalentní hladiny akustického tlaku A (hluku). Naměřené hodnoty přitom znázorňují konkrétní ekvivalentní hladiny akustického tlaku A na daných místech, v danou dobu a za konkrétních podmínek. V tabulce jsou rovněž uvedeny hodnoty vypočtené ve stejných měřicích bodech matematickým modelováním a je provedeno porovnání naměřených a vypočtených hodnot ekvivalentních hladin akustického tlaku A ve všech měřicích bodech. Z výsledků porovnání je zřejmé, že rozdíl mezi výpočtem a měřením je v toleranci do ± 2 dB. Zjištěné rozdílové hodnoty zajišťují dostatečnou přesnost výpočtů.
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Tabulka C13 Ověření výpočtového modelu - porovnání naměřených a vypočtených ekvivalentních hladin akustického tlaku $A_{eq,T}$

<table>
<thead>
<tr>
<th>Číslo bodu</th>
<th>Komunikace</th>
<th>Měření $L_{Aeq,T}$ (dB)</th>
<th>Výpočet $L_{Aeq,T}$ (dB)</th>
<th>Rozdíl (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Den / Noc</td>
<td>Den / Noc</td>
<td>Den / Noc</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Böhmova č. p. 1976/1 *</td>
<td>54,3 / 47,8</td>
<td>53,6 / 46,5</td>
<td>-0,7 / -1,3</td>
</tr>
<tr>
<td>M2</td>
<td>Archeologická č. p. 1881/8 *</td>
<td>56,9 / 50,2</td>
<td>57,6 / 48,3</td>
<td>0,7 / -1,9</td>
</tr>
<tr>
<td>M3</td>
<td>Jeremiášova č. p. 2722/2a</td>
<td>65,2</td>
<td>66,4</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Poznámka:
* vzhledem ke klimatickým podmínkám nebyly měřeny hodnoty $L_{Aeq,T}$ v noční době za celých 8 hodín.

C.2.6. Fauna a flóra

Flóra a fauna nebudou významně ovlivněnou složkou životního prostředí. V důsledku stávajícího využití zcela zastavěné lokality lze v zájmovém území pro realizaci záměru vyloučit přítomnost cenných lokalit výskytu fauny a flóry.

C.2.6.1. Biogeografické začlenění

Dle biogeografického členění náleží širší zájmové území záměru k Řipskému bioregionu (1.2.), respektive do jeho přechodové a nereprezentativní zóny s Karlštejnským bioregionem (1.18). Řípský bioregion je tvořen Pražskou plošinou rozčleněnou hlubokými zářezy vytvořenými erozní činností vodních toků. Region má protáhlý tvar ze severozápadu na jihovýchod.

Bioregion tvoří opuková tabule s pauperizovanou teplomilnou biotou 2. bukovo-dubového vegetačního stupně. V kaňonech Vltavy a jejích přítoků, podobně jako na ojedinělých elevacích, se nachází pestrá biota se zbytky teplomilné lesní a stepní vegetace. Netypickými částmi jsou terasy s acidofilními doubravami, které tvoří přechod do Polabského bioregionu a dále Pražská kotlina tvoří přechod k Českobrodskému bioregionu.

V současnosti v bioregionu dosud převažují agroekosystémy polí a trvalých travních porostů s pozměněnou druhovou skladbou. Hodnotné jsou fragmenty travních lad a skalního řídkolesí. Významný je zvyšující se podíl urbanizovaných ploch, lesy se prakticky nevyskytují, celá biochora je spíše bez přírodně blízkých společenstev. Kostra ekologické stability je obecně nedostávající.
C.2.6.2. Flóra

V současnosti jsou plochy dotčené záměrem převážně zpevněné. Zeleň v plochách budoucího záměru a v jeho okolí roste částečně v kontejnerech anebo pružích mezi opěrnými zdmi, parkovacími stáními a manipulačními plochami obchodního centra Lužiny. V době průzkumu v roce 2012 se na pozemcích nacházela zeleně na východní a západní fasádě objektu obchodního centra Lužiny, která byla v průběhu jeho rekonstrukce odstraněna.

V zájmovém území byly zjištěny druhy stromů a plošné porosty uvedené v následující tabulce.

Tabulka C14 Druhy stromů a plošné porosty v zájmovém území a jeho blízkém okolí

<table>
<thead>
<tr>
<th>Stromy</th>
<th>Plošné porosty</th>
</tr>
</thead>
<tbody>
<tr>
<td>javor jasanolistý (Acer negundo)</td>
<td>bez černý (Sambucus nigra)</td>
</tr>
<tr>
<td>javor mléč (Acer platanoides)</td>
<td>borovice křeč (Pinus mugo)</td>
</tr>
<tr>
<td></td>
<td>břečťán popínavý (Betula pendula)</td>
</tr>
<tr>
<td></td>
<td>dřišťál Thunbergův (Berberis thunbergii)</td>
</tr>
<tr>
<td></td>
<td>hlovec skalní (Juniperus virginiana)</td>
</tr>
<tr>
<td></td>
<td>kalina obecná (Viburnum opulus)</td>
</tr>
<tr>
<td></td>
<td>kalina vrásčitolistá (Viburnum x rhytigophyllum)</td>
</tr>
<tr>
<td></td>
<td>kolkvície krásná (Kolkwitzia amabilis)</td>
</tr>
<tr>
<td></td>
<td>mohna (Potentilla)</td>
</tr>
<tr>
<td></td>
<td>rybíz (Ribes sp.)</td>
</tr>
<tr>
<td>javor stříbrný (Acer saccharinum)</td>
<td>rybíz alpínský (Ribes alpinum)</td>
</tr>
<tr>
<td>javor mléč (Acer platanoides)</td>
<td>příšavník (Parthenocissus sp.)</td>
</tr>
<tr>
<td></td>
<td>růže svraskalá (Rosa rugosa)</td>
</tr>
<tr>
<td></td>
<td>řešetlá počistivý (Rhamnus catharica)</td>
</tr>
<tr>
<td></td>
<td>skalník (Cotoneaster sp.)</td>
</tr>
<tr>
<td></td>
<td>taveník (Spiraea sp.)</td>
</tr>
<tr>
<td></td>
<td>taveník nízky (Spiraea bumalda)</td>
</tr>
<tr>
<td></td>
<td>taveník populist (Spiraea x cinerea)</td>
</tr>
<tr>
<td></td>
<td>taveník van Houtteův (Spiraea x van Houtei)</td>
</tr>
<tr>
<td></td>
<td>vajgélie (Weigela)</td>
</tr>
<tr>
<td></td>
<td>vrba jíva (Salix caprea)</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Celkem bylo v zájmovém území zjištěno 14 kusů stromů a 11 skupin plošných porostů o celkové rozloze přibližně 1 000 m². Stav hodnocených dřevin lze shrnout jako průměrný, u některých dřevin zhoršený. Jde o mladé dřeviny s nedostatečným kořenovým prostorem pro zdárný budoucí rozvoj. Keřové skupiny vzhledem k jejich druhovému složení nelze považovat za sadovnicky významné. Na základě místních šetření prováděných v letech 2013 a 2014 lze obecně konstatovat, že zeleň v areálu byla v minulosti udržována pouze v omezeném rozsahu.

C.2.6.3. Fauna

V navrhované lokalitě stavby byl zaznamenán výskyt pouze zcela běžných druhů ptáků a savců, kteří se adaptovali na prostředí města. V zájmovém území lze vyloučit výskyt živočichů chráněných dle zákona č. 114/1992 Sb., o ochraně přírody a krajiny, ve znění pozdějších předpisů.

C.2.7. Ekosystémy

Ekosystémy nebudou významně ovlivněnou složkou životního prostředí. Vzhledem k současnému stavu území a v důsledku stávajícího využití zcela zastavěné lokality lze v zájmovém území pro realizaci záměru vyloučit přítomnost hodnotných ekosystémů.

C.2.8. Krajina

Širší zájmové území záměru patří dle morfologického členění do Pražské kotliny, jejíž reliéf je tvořen mírně zvlněnou plošinou ukloněnou od jihozápadu k severovýchodu. Plošina je rozčleněna systémem údolních zářezů, které mají, zejména v údolí Vltavy, charakter hlubokých údolí až kaňonů vytvořených jejími přítoky. Svahy údolí jsou strmé až skalnaté.

Na severozápadě až jihozápadě se krajinářsky zcela působením člověka a který lze z hlediska krajinného rázu charakterizovat jako intenzivně využívanou velkoměstskou urbanizovanou krajinu. Terén území je v důsledku lidské činnosti značně členitý. Na pozemcích byly v minulosti provedeny rozsáhlé zemní práce a terénní úpravy v souvislosti s výstavbou Obchodního centra Lužiny.
Základní typologie krajiny použitelná pro hodnocení krajinného rázu vychází z definice tří účelově krajinných typů (Löw; 2003):

- **Typ A**: krajina silně pozměněná civilizačními zásahy (plně antropogenizovaná), s dominantním až výlučným výskytem sídelních a industriálních nebo agroindustriálních prvků. Tento typ krajiny zaujímá asi 30 % území České republiky.

- **Typ B**: krajina s vyrovnaným vztahem mezi přírodou a člověkem (harmonická), s masovým výskytem přírodních a agrárních prvků a s plošně omezeným výskytem industriálních prvků. Tento typ krajiny zaujímá zhruba 60 % území České republiky.

- **Typ C**: krajina s nevýraznými civilizačními zásahy (relativně přírodní), s dominantním výskytem přírodních prvků. Tento typ krajiny zaujímá přibližně 10 % území České republiky.

Každá z těchto kategorií je podle kvalitativních ukazatelů dále dělena na 3 podkategorie:

- + zvýšená hodnota
- 0 základní hodnota
- - snížená hodnota

C.2.9. Obyvatelstvo

C.2.10. Hmotný majetek a kulturní památky

Hmotný majetek

Území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ leží na pozemcích ve vlastnictví investorů. V území dotčeném realizací záměru představuje hmotný majetek Obchodní centrum Lužiny a k němu přiléhající zpevněné manipulační a parkovací plochy zásobovacích dvorů stávajícího obchodního centra Lužiny, ke kterému budou objekty záměru přiléhat ze západní a z východní strany. Vlastní zájmové území pro realizaci záměru není obvyleno.
OC Lužiny nebude stavbou záměru negativně dotčeno. V zájmovém území pro stavbu záměru se nachází také inženýrské sítě, které budou v rámci stavby ochráněny nebo budou přeloženy v souladu s vyjádřením příslušných správců zařízení a sítí a podle příslušných zákonů, vyhlášek a norem.

Kulturní památky

V zájmovém území pro výstavbu záměru ani v jeho blízkém okolí se nenacházejí žádné nemovité kulturní památky podléhající zákonu číslo 20/1987 Sb., o státní památkové péči ve znění pozdějších předpisů, které by byly evidovány v Ústředním seznamu kulturních památek (ÚSKP) České republiky (viz též kapitola C.1.5 Území historického, kulturního nebo archeologického významu).

Území určené pro výstavbu záměru neleží v Pražské památkové rezervaci ani v jejím ochraném pásmu. Zájmové území neleží ani v památkové zóně vyhlášené vyhláškou HMP číslo 10/1993 Sb., o prohlášení části území hl. m. Prahy za památkové zóny a o určení podmínek jejích ochrany.

Archeologická nalezniště

Z informací získaných z projektu "Státní archeologický seznam České republiky" (SAS) Národního památkového ústavu v Praze vyplývá, že v území budoucí výstavby záměru ani v jeho blízkosti nejsou známy žádné archeologické nálezy. V zájmovém území záměru nejsou evidovány archeologické lokality ve smyslu zákona číslo 20/1987 Sb. Nejbližší archeologická lokalita se nalézá zhruba 1,5 km východně od záměru.

V areálu budoucí výstavby záměru se nenacházejí žádné archeologické stopy ani významné archeologické plochy. Vzhledem k umístění záměru do oblasti historicky a prehistoricky hojně osídlené nelze výskyt archeologického nálezu vyloučit. Avšak vzhledem k dřívějším rozsáhlým stavebním pracím na lokalitě je pravděpodobnost archeologických nálezů minimální.

C.2.12. Doplňující údaje

Radioaktivní záření

Významným hlediskem pro posouzení zájmového území z hlediska vlivů na životní prostředí a zdraví obyvatel je riziko pronikání radonu z podloží. Podle §94 a §95 vyhlášky Státního úřadu pro jadernou bezpečnost číslo 307/2002 Sb., o radiační ochraně, kterou se provádí §6 zákona číslo 18/1997 Sb., je při umisťování nových staveb s pobytovým prostorem nutno zhodnotit riziko pronikání radonu z podloží.

V zájmovém území pro realizaci záměru bylo provedeno měření objemové aktivity radonu ve vzorcích půdního vzduchu, podle kterého byl stavebnímu pozemku přiřazen střední radonový index. Podle mapy radonového rizika, umístěné na serveru Magistrátu hl. m. Prahy, leží zájmové území rovněž v oblasti s středním radonovým rizikem (viz následující obrázek).
V případě nízkého radonového indexu pozemku není třeba provádět speciální stavebně technická opatření. Také v případě ověření vyššího (středního) radonového indexu bude jako protiradonová ochrana budovy sloužit její hydroizolační systém. Vzhledem k tomu, že pobytové prostory záměru budou situovány nad přirozeně provětrávanými nadzemním hromadnými garážemi, nehrozí v případě záměru riziko pronikání radonu z podloží do obytných prostor.

Obrázek C6 Mapa radonového rizika

Kapacity mateřských a základních škol

Na základě vyjádření doručených k oznámení byly prověřeny kapacity mateřských škol (MŠ) a základních škol (ZŠ) v zájmovém území pro realizaci záměru a v jeho okolí. Zjištěné údaje jsou uvedeny v následující tabulce.

Poznámky k tabulce:
- Stavební kapacita MŠ – optimální naplněnost je 24 dětí na kmenovou třídu (výjimečně maximálně 28 dětí).
- Stavební kapacita ZŠ - optimální kapacita naplněnosti je 24 žáků na kmenovou třídu u úplné ZŠ, 20 žáků u 1. stupňové ZŠ, maximální 30 žáků na třídu.
- Rejstříková kapacita – maximálně možná kapacita povolená na základě žádosti o výjimky dle školského zákona nebo použití jiných odborných učeben, kdy je možné poskytnout finanční dotaci na mzdy ze státního rozpočtu (byla v minulosti stanovena s cílem vytvoření rezervy pro budoucí potřeby) - tuto kapacitu nelze překročit.
- Hvězdičky u čísel počtu žáků charakterizují skutečnost, že pokud je ve třídě dítě zdravotně znevýhodněné, snižuje se počet dětí na třídu.

Tabulka C15 Kapacity mateřských a základních škol v zájmovém území a jeho okolí

<table>
<thead>
<tr>
<th>Stodůlky + Lužiny</th>
<th>Stavební kapacita (dětí, žáků)</th>
<th>Max. povolená kapacita ve školském rejstříku</th>
<th>Skutečnost k 30.9.2013 (dětí, žáků)</th>
<th>Očekávaný stav k 1.9.2014 (dětí, žáků)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MŠ Hostinského 1534</td>
<td>96 (4 řídy x 24)</td>
<td>120</td>
<td>106*</td>
<td>106</td>
</tr>
<tr>
<td>MŠ Vlachova 1501</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MŠ Vlasáková 955</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MŠ Horáková 2064</td>
<td>96</td>
<td>130</td>
<td>125*</td>
<td>125</td>
</tr>
<tr>
<td>MŠ Chlupova 1798</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MŠ Chlupova 1799</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MŠ Mohylová 1964</td>
<td>96</td>
<td>135</td>
<td>135</td>
<td>135</td>
</tr>
<tr>
<td>MŠ Podpěřova 1880</td>
<td>96</td>
<td>135</td>
<td>133</td>
<td>135</td>
</tr>
<tr>
<td>MŠ Trávníčkova 1747</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>MŠ Zázvorkova 1994</td>
<td>144 (6 tříd)</td>
<td>144</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>ZŠ Kuncova 1580</td>
<td>864 (36 tříd x 24)</td>
<td>650 byla snížena o pronájmy</td>
<td>531</td>
<td>568</td>
</tr>
<tr>
<td>ZŠ Mládí 135</td>
<td>480 (20 tříd x 24)</td>
<td>600</td>
<td>576</td>
<td>600</td>
</tr>
<tr>
<td>ZŠ Trávníčkova 177</td>
<td>624 (26 tříd x 24)</td>
<td>950</td>
<td>367</td>
<td>417</td>
</tr>
<tr>
<td>ZŠ Brdičkova 1878</td>
<td>648 (27 tříd x 24)</td>
<td>1 100</td>
<td>703</td>
<td>707</td>
</tr>
<tr>
<td>ZŠ Bronzová 2027</td>
<td>480 (20 tříd x 24)</td>
<td>930</td>
<td>508</td>
<td>574+35 z 1.st Mohylová</td>
</tr>
<tr>
<td>ZŠ Mohylová 1963</td>
<td>240 (12 tříd x 20)</td>
<td>268</td>
<td>213</td>
<td>261</td>
</tr>
</tbody>
</table>

Ve výhledu se předpokládá následující vývoj:
- Mateřské školy – očekávaný demografický pokles bude přibližně do 2 let vyrovnán dětmi z nové výstavby (Západní Město Britská čtvrť – v letech 2013 - 2018 se plánuje celkem 311 nových bytů), případně později i přijímaním dětí mladších 3 let.
- Základní školy – demografický nárůst počtu dětí lze očekávat ještě 5 let, s ním a novou výstavbou by se dočasně volné kapacity měly naplnit do roku 2020.

On základě výše uvedeného lze shrnout, že v zájmovém území není nedostatek míst v základních školách (v ZŠ Kuncova byla část kapacity pronajata). Mateřské školy by měly být zhruba za dva roky naplněny. V případě zájmu bude možno zřídit v OC Lužiny nestátní zařízení pro předškolní děti.
C.3. Celkové zhodnocení kvality životního prostředí v dotčeném území z hlediska jeho únosného zatížení

C.3.1. Celkové zhodnocení kvality životního prostředí v dotčeném území

Z hlediska celkového zhodnocení kvality životního prostředí v zájmovém území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ a v jeho okolí jsou nejvýznamnějšími sektory životního prostředí ovzduší a akustická (hluková) situač.

Z hlediska celkové úrovně imisní zátěže v ovzduší lze hodnocenou lokalitu charakterizovat v rámci Prahy jako mírně až středně zatíženou. Na základě měření kvality ovzduší na blízké stanici imisního monitoringu, situované zhruba 200 metrů severně od území záměru, lze konstatovat, že imisní limity všech sledovaných znečišťujících látek v ovzduší jsou v současnosti v zájmovém území záměru plněny. Benzo(a)pyren není na dotčené monitorovací stanici sledován.

Z rozboru výsledků sledování kvality ovzduší na stanici ČHMÚ č. 1520 Praha 5 - Stodůlky v letech 2009 až 2013 lze učinit následující závěry:

- Hodnoty 19. nejvyšší hodinové koncentrace oxidu dusičitého (NO₂) dosahovaly úrovně 87,6 až 105,2 µg.m\(^{-3}\). Imisní limit byl v průběhu hodnoceného období plněn s dostatečnou rezervou.
- Průměrné roční koncentrace NO₂ se pohybovaly v rozmezí 23,8 – 26,0 µg.m\(^{-3}\). I v tomto případě byl imisní limit plněn s dostatečnou rezervou.
- Hodnoty 36. nejvyšší denní koncentrace PM\(_{10}\) se pohybovaly v rozmezí od 38,0 do 49,7 µg.m\(^{-3}\). V průběhu hodnoceného období byl imisní limit pro denní koncentrace suspendovaných částic frakce PM\(_{10}\) plněn.
- Hodnoty průměrných ročních koncentrací suspendovaných částic frakce PM\(_{10}\) se pohybovaly pod úrovní platného imisního limitu v rozmezí od 21,8 do 26,5 µg.m\(^{-3}\).
- Průměrné roční koncentrace suspendovaných částic frakce PM\(_{2,5}\) se pohybovaly v rozmezí 10,4 – 18,4 µg.m\(^{-3}\), imisní limit byl dodržen.

Z hlediska pětiletých průměrných koncentrací sledovaných znečišťujících látek za roky 2009 – 2013 publikovaných na stránkách ČHMÚ lze rovněž dovedit, že imisní limity všech sledovaných znečišťujících látek v ovzduší jsou v dlouhodobém průměru v zájmovém území splněny. Jedinou problematickou látkou je benzo(a)pyren, který podle uvedeného hodnocení překračuje limit o 25 %. Tato situace je typická pro většinu území hl. m. Prahy i dalších větších měst.

Úroveň znečištění ovzduší v dané lokalitě je možné posoudit na také základě projektu „Modelové hodnocení kvality ovzduší na území hl. m. Prahy (aktualizace 2014)“, který hodnotí znečištění ovzduší na území města v pravidelných dvouletých aktualizacích. Z hlediska průměrných ročních koncentrací sledovaných znečišťujících látek lze imisní situaci hodnotit následovně:

- Průměrné roční koncentrace oxidu dusičitého ve vybraných referenčních bodech dosahují 54 až 57 % imisního limitu a hodnotu imisního limitu nepřekračují.
 V prostoru navrhovaného záměru se hodnoty pohybují okolo 56 % imisního limitu.
Dokumentace záměru
Polyfunkční domy – Centrum Lužina

Průměrné roční koncentrace suspendovaných částic frakce PM\textsubscript{10} hodnotu imisního limitu nepřekračují – byly vypočteny v rozmezí od 61 do 64 % limitu. V místě výstavby lze zaznamenat hodnoty na úrovni 62 % limitu.

Průměrné roční koncentrace suspendovaných částic PM\textsubscript{2,5} se pohybují od 54 % do 56 % imisního limitu. V prostoru záměru jsou patrné hodnoty okolo 55 % limitu, překročení nebylo zaznamenáno v žádné části zájmového území.

V případě benzenu se vypočtené hodnoty nacházejí v intervalu mezi 9 až 11 % imisního limitu.

Z hlediska krátkodobých koncentrací sledovaných znečišťujících látek lze hodnotit imisní situaci následovně:

- Vypočtené maximální hodinové koncentrace oxidu dusičitého ve vybraných referenčních bodech dosahují 66 až 71 % imisního limitu, splňují tedy stanovený limit.
- Modelové maximální denní koncentrace suspendovaných prachových částic frakce PM\textsubscript{10} lze zaznamenat v rozmezí 149,7 – 167,6 µg.m-3. O splnění limitu vypovídá ukazatel počtu překročení limitu denních koncentrací v průběhu roku. Ten je limitován počtem 35 dní za rok (9,6 % roční doby). Překročení bylo vypočteno v rozmezí od 5,8 do 6,8 %, to znamená, že překročení imisního limitu přes povolený počet dní nebylo v území zaznamenáno.
- Maximální hodinové koncentrace benzenu se pohybují ve vybraných referenčních bodech v rozmezí 2,6 – 4,0 µg.m-3. Imisní limit pro tuto veličinu není stanoven.

Hodnoty ekvivalentních hladin akustického tlaku (hluku) v zájmovém území byly stanoveny matematickým modelováním (výpočtem) v rámci hlukových studií, které jsou přílohou číslo 5 dokumentace. Akustická situace v zájmovém území záměru byla zjištěna také měřením, a to ve třech vybraných měřicích (kontrolních) bodech - viz kapitola dokumentace „C.2.5.2. Měření a ověření výpočtového modelu“.

Dominantním zdrojem hluku v zájmovém území je automobilová doprava. Na základě provedeného matematického modelování počáteční akustické (hlukové) situace v zájmovém území a jednorázového (kalibračního) měření je možno hodnotit území podél odjezdových a příjezdových tras k záměru jako území s částečně zvýšenou hlukovou zátěží. Z analýzy výsledků modelových výpočtů hluku vyplývají následující závěry:

- Vypočtené hodnoty hluku z provozu silniční dopravy na komunikacích III. třídy se v zájmovém území záměru a v jeho okolí pohybují v denní době v rozmezí od $L_{\text{A}_{eq},16h} = 42,6$ dB do $L_{\text{A}_{eq},16h} = 56,4$ dB a v noční době od $L_{\text{A}_{eq},8h} = 32,9$ dB do $L_{\text{A}_{eq},8h} = 47,1$ dB. Ve všech kontrolních výpočetných bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Ve výpočetných bodech M2, V07 (pouze v noční době) a V18 je překročen hygienický limit pro hluk z provozu dopravy na komunikacích III. třídy 55/45 dB (den/noc). Hlukové mapy jsou uvedeny v příložích hlukových studií, které jsou v plném rozsahu uvedeny v příloze číslo 5 dokumentace.
- Vypočtené hodnoty ekvivalentních hladin akustického tlaku A (hluku) z provozu silniční dopravy na komunikacích I. třídy se v zájmovém území pro realizaci záměru a v jeho okolí pohybují v denní době v rozmezí od $L_{\text{A}_{eq},16h} = 42,7$ do $L_{\text{A}_{eq},16h} = 64,4$ dB a v noční době od $L_{\text{A}_{eq},8h} = 36,0$ do $L_{\text{A}_{eq},8h} = 58,5$ dB. Ve všech kontrolních výpočetných bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž.

C.3.2. Priority trvale udržitelného využívání území

Pozemky, na kterých bude realizován zamýšlen stavební záměr, jsou v současné době zcela antropogenně přetvořeny, protože jsou zastavěny zpevněnými plochami zásobovacích dvorů stávajícího Obchodního centra Lužiny. Pozemky jsou vedeny v katastru nemovitostí jako ostatní plochy. Podle stávajícího způsobu využití jsou pozemky pro realizaci záměru vedeny v katastru nemovitostí jako jiná plocha. V současnosti jsou pozemky pro stavbu záměru volně přístupné.

Priority využívání zájmového území určuje Územní plán sídelního útvaru hl. m. Prahy schválený usnesením Zastupitelstva hl. m. Prahy č. 10/05 ze dne 9.9.1999 a vydaný vyhláškou hl. m. Prahy č. 32/1999 Sb., ve znění pozdějších předpisů, který nabyl účinnosti dne 1.1.2000, včetně schválených a platných změn.

Územní plánování vychází z trvale udržitelných principů využívání území. Definuje v území funkční plochy určené k zástavbě, plochy veřejné zeleně, parků, zahrad a izolačních prvků, plochy k rekreaci a další plochy, čímž vnáší do územního plánování měst základní principy trvale udržitelného využívání území.

Územní plán sídelního útvaru hlavního města Prahy může stanovit míru využití území, která se vyjadřuje kódem míry využití území. Kódy míry využití území je dán maximální přípustnou mírou využití území (kód A-K) a minimálním podílem bydlení (kód 0-9). Směrná (závazná) část kódu míry využití území je dán koeficientem podlažních ploch (KPP) a koeficientem zeleně (KZ).

Dle platného Územního plánu sídelního útvaru hl. m. Prahy se zájmové plochy pro realizaci záměru nachází ve smíšeném polyfunkčním území v ploše s funkčním využitím SV – všeobecně smíšené. Pro dotčenou funkční plochu není definován kód míry využití území. Umístění dotčené funkční plochy SV je zřejmé z obrázku na následující straně.

Územní plán stanovuje pro funkční plochu SV určenou pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ níže uvedené způsoby možného využití.
Funkční plocha SV (polyfunkční území s všeobecně smíšeným funkčním využitím)

Jedná se o území sloužící pro umístění polyfunkčních staveb nebo kombinaci monofunkčních staveb pro bydlení, obchod, administrativu, kulturu, veřejné vybavení, sport a služby všeho druhu, kde žádná z funkcí nepřesáhne 60% celkové kapacity území vymezeného danou funkcí.

- **Funkční využití:**

 Bydlení, obchodní zařízení s celkovou plochou nepřevyšující 5 000 m² prodejní plochy, stavby pro administrativu, kulturní a zábavní zařízení, školy, školská a ostatní vzdělávací a vysokoškolská zařízení, mimoškolní zařízení pro děti a mládež, zdravotnická zařízení, zařízení sociální péče, zařízení veřejného stravování, ubytovací zařízení, církevní zařízení, stavby pro veřejnou správu, sportovní zařízení, služby, hygienické stanice, veterinární zařízení v rámci polyfunkčních staveb a staveb pro bydlení, drobná nerušící výroba, čerpací stanice pohonných hmot bez servisů a opraven jako nedílná část garáží a polyfunkčních objektů, stavby, zařízení a plochy pro provoz PID, sběrny surovin, malé sběrné dvory.

2 Jako drobná nerušící výroba nelze v tomto případě povolit klempírny, lakovny, truhlárny, betonárky a další provozy vyžadující vstup těžké nákladové dopravy do území a dále čerpačí stanice pohonných hmot
- **Doplňkové funkční využití:**
 Drobné vodní plochy, zeleň, cyklistické stezky, pěší komunikace a prostory, komunikace vozidlové, nezbytná plošná zařízení a liniová vedení technického vybavení.
 Parkovací a odstavné plochy, garáže.

- **Výjimečné přípustné funkční využití:**
 Víceúčelová zařízení pro kulturu, zábavu a sport, obchodní zařízení s celkovou plochou nepřevyšující 15 000 m² prodejní plochy, zařízení záchranného bezpečnostního systému, veterinární zařízení, parkoviště P+R, čerpadla pohonu bez servisu a opraven, dvory pro údržbu pozemních komunikací, sběrné dvory, zahradnictví, stavby pro drobnou pěstitelskou činnost a chovatelství.
 Jako výjimečně přípustné bude posuzováno i umístění některé z obecně přípustných funkcí ve všeobecně smíšeném funkčním využití v podílu celkové kapacity vyšším než 60%.

Na základě porovnání územního plánu a záměru je možno konstatovat, že obě varianty záměru „Polyfunkční domy – Centrum Lužiny“ jsou v souladu s platným územním plánem hl. m. Prahy. Žádná z funkcí záměru nepřesáhne 60 % celkové kapacity území vymezené danou funkční plochou. Návrh stavby dále zohledňuje a dodržuje veškerá dotčená ustanovení Vyhlášky číslo 26/1999 Sb. HMP, o obecných technických požadavcích (OTP) na výstavbu v hl. m. Praze, ve znění pozdějších předpisů.

Dle vyhlášky HMP č. 32/1999, ve znění pozdějších předpisů včetně schválených a platných změn, se řešené území nachází mimo hranice velkého rozvojového území (VRÚ) a není dotčeno stavební uzávěrou.
ČÁST D – KOMPLEXNÍ CHARAKTERISTIKA A HODNOCENÍ VLIVŮ ZÁMĚRU NA VEŘEJNÉ ZDRAVÍ A ŽIVOTNÍ PROSTŘEDÍ

D.I. Charakteristika předpokládaných vlivů záměru na obyvatelstvo a životní prostředí a hodnocení jejich velikosti a významnosti

Nejvýznamnější potenciální vlivy výstavby a provozu obou variant záměru „Polyfunkční domy – Centrum Lužiny“ se předpokládají na kvalitu ovzduší a na hlukovou zátěž v zájmovém území a v jeho nejbližším okolí.

D.I.1. Vlivy na obyvatelstvo, včetně sociálně ekonomických vlivů

V období výstavby lze očekávat především vliv stavby na psychickou pohodu obyvatel zejména v důsledku hluku a emisí ze staveniště a stavební dopravy, ale také kvůli znečištění komunikací a podobně. Hlavními potenciálními vlivy běžného provozu záměru na zdraví obyvatel budou zejména vlivy automobilové dopravy související s provozem záměru na akustické (hlukové) charakteristiky prostředí a na kvalitu ovzduší.

D.I.1.1 Vlivy na zdraví obyvatelstva

Vliv hluku

Jako hluk se obecně označuje jakýkoliv slyšitelný zvuk, který je nechtěný a obtěžující, a to bez ohledu na jeho intenzitu. Podle světové zdravotnické organizace (WHO) a dalších zdrojů pojednávajících o nepříznivých účincích hluku na lidské zdraví a pohodu lidí je možno považovat za dostatečně prokázané nepříznivé zdravotní účinky hluku poškození sluchového aparátu, ovlivnění kardiovaskulárního systému, zvýšenou spotřebu sedativ a hypnotik, rušení spánku a nespavost a nepříznivé ovlivnění osvojování řeči a čtení u dětí.

Velký vliv na účinky hluku má ovšem individuální vnímanost jednotlivce vůči rušivému účinku hluku, která může být umocněna nebo potlačena negativním nebo kladným emocionálním vztahem k jeho zdroji. Významnou úlohu z hlediska účinků hluku hraje také pocit, do jaké míry jej člověk může ovlivňovat nebo zda pro něj má nějaký význam.

Při působení hluku však kromě individuální vnímanosti a fyzikálních vlastností hluku velmi záleží i na řadě dalších neakustických faktorů sociální, psychologické nebo ekonomické povahy. To vede k různým výsledkům studií, které prokazují u exponované populace při stejných hladinách hluku různého původu rozdílný efekt nebo ukazují rozdílné výsledky při stejných zdrojích i hladinách hluku na různých lokalitách.
Hodnocení rizika hluku pro zdraví bylo provedeno v souladu s požadavky autorizačního návodu AN 15/04 VERZE 3 SZÚ Praha k hodnocení zdravotního rizika expozice hluku. Podkladem k hodnocení hlukové expozice obyvatel stávající zástavby v dotčeném území byly výstupy akustického posouzení (hlukových studií), které hodnotí počáteční akustickou situaci a její budoucí ovlivnění realizací záměru. Podle výsledků hodnocení je stávající hluková zátěž obyvatel dotčeného území určována hlavně dopravním hlukem a i při dodržení hygienického limitu pro hluk z dopravy s Korekcí na starou hlukovou zátěž je pro část obyvatel příčinou obtěžování, narušení kvality spánku a mírně zvýšeného rizika kardiovaskulárních onemocnění.

Vlivy na zdraví – varianta 1

Realizaci záměru by podle provedeného odhadu mělo dojít k nepatrnému zvýšení rušivého hluku v nočních hodinách a naopak ke snížení obtěžování hlukem a rizika kardiovaskulárních onemocnění. Vypočtené změny jsou však s ohledem na nejistotu jak vstupních dat o expozici, tak použitých vztahů expozice a účinku zanedbatelné. Pro hodnocený záměr je proto možné z hlediska hluku z dopravy konstatovat, že při splnění navržených protihlukových opatření nepovede k prokazatelné změně zdravotního rizika hluku pro stávající obyvatele dotčeného území.

Vlivy na zdraví – varianta 2

Po realizaci záměru se podle výsledků akustického posouzení hluková zátěž území, potenciálně dotčeného provozem navržených budov, prakticky nezmění. Vlivem navrženého protihlukového opatření sice dojde k dílčímu snížení dopravního hluku, výsledný efekt ve snížení populačního rizika hlukové zátěže je však nepatrný. Pro posuzovaný záměr stavby polyfunkčních budov je podstatné, že podle výsledků hodnocení jejich provozem, včetně souvisejícího navýšení dopravy, nedojde ke zvýšení úrovne zdravotního rizika hlukové zátěže obyvatel dotčeného území.

Vliv imisí v ovzduší

Podkladem pro hodnocení úrovně znečištění ovzduší byly výstupy rozptylové studie, která hodnotí výchozí imisní situaci a předpokládaný příspěvek posuzovaného záměru pro oxid dusičitý (NO₂), suspendované částice frakce PM₁₀, suspendované částice frakce PM₂,₅, benzen a benzo(a)pyren. Tyto látky představují kompletní zastoupení škodlivin, které je možné a účelně zahrnout do hodnocení vlivů imisí daného záměru na zdraví obyvatel.

Zdrojem emisí do ovzduší, souvisejících s provozem záměru „Polyfunkční domy – Centrum“ Lužiny, bude především automobilová doprava, včetně emisí z parkování v hromadných garážích záměru. Vytápění záměru bude zajištěno z centrálního zdroje tepla a nebude proto zdrojem emisí v zájmovém území.

Jako doplňující podklad o imisním pozadí dotčené lokality byly využity oficiální údaje Českého hydrometeorologického ústavu pro danou lokalitu, doplněné výsledky imisního monitoringu na blízké monitorovací stanici kvality ovzduší, která je od území pro realizaci záměru vzdálena zhruba 200 metrů severním směrem.
Při hodnocení zdravotních rizik znečištění ovzduší byly použity aktuální poznatky z odborné literatury o nebezpečnosti a vztazích expozice a účinků hodnocených látek s příhlednutím k přípravovanému autorizačnímu návodu Státního zdravotního ústavu Praha pro hodnocení zdravotního rizika expozice chemickým látkám ve venkovním ovzduší.

Z hlediska současně imisní zátěže je lokalita záměru hodnocena jako mírně až středně zatížená. Kvantitativní odhad zdravotního rizika v ukazatelích úmrtnosti a nemocnosti obyvatel odpovídá průměrné úrovni rizika znečištění ovzduší v ČR.

Vlivy na zdraví – varianta 1 a varianta 2

Pro obě varianty záměru jsou závěry hodnocení zdravotních rizik znečištění ovzduší stejně. Vypočtený předpokládaný imisní příspěvek záměru, daný navýšením objemu dopravy a parkování vozidel souvisejícím s provozem záměru, bude z hlediska zdravotního rizika znečištění ovzduší pro obyvatele dotčeného území u všech hodnocených škodlivin zanedbatelný a kvantitativně prakticky nehodnotitelný.

Relativně významnější může být, podle vypočtených krátkodobých maximálních koncentrací NO₂ a PM₁₀, při souběhu nejméně příznivých emisních a rozptylových podmínek podílet na riziku zvýšené respirační nemocnosti u exponovaných obyvatel. Je proto opodstatněné s ohledem na obyvatele nejbližších bytových domů důsledně plnit opatření ke snížení prašnosti a k omezení emisí ze stavební činnosti a staveništní dopravy při inverzních situacích, navržená zpracovatelem rozptylové studie.

D.1.1.2. Sociální a ekonomické důsledky

Pracovní příležitosti a sociální důsledky

Realizace záměru bude mít pozitivní vliv na pracovní příležitosti a sociální situaci. Po stránce sociální bude pozitivním příznakem realizace záměru vznik řady dočasných pracovních příležitostí v době jeho výstavby a pravděpodobně také několika nových pracovních míst souvisejících se zajištěním běžného provozu záměru (údržba objektů, údržba zeleně, služby pro obyvatele obytných domů a další).

Ekonomické důsledky

Ekonomické důsledky výstavby a provozu záměru „Polyfunkční domy – Centrum Lužiny” budou pozitivní, protože realizace záměru poskytne možnost dalšího ekonomického rozvoje firmám, které budou provádět stavbu, poskytovat služby související se zajištěním běžného provozu záměru a ve variátně 1 záměru využívat administrativní plochy záměru pro své podnikání.
D.I.1.3. Ovlivnění faktoru psychické pohody

Období výstavby

Lze očekávat, že část obyvatel nejbližších bytových domů situovaných v okolí staveniště záměru „Polyfunkční domy – Centrum Lužiny” bude během výstavby záměru počítovat rušivě ovlivnění pohody. V období výstavby plánovaných budov bude i při dodržení hygienického limitu hluku ze stavební činnosti nevyhnutelné určité obtěžování obyvatel přilehlých domů.

Rušivými faktory může být zejména provoz stavebních mechanismů a stavební automobilová doprava. Na snížení faktoru pohody v době výstavby se mohou podílet také další vlivy stavebních prací jako je například prašnost a přenos bláta na komunikace v okolí staveniště. Zvýšená prašnost se může projevovat především v době provádění demolic a zemních prací, případně v okolí dočasně uložených prašných materiálů, a to zejména při dlouhodobě suchém a větrném počasí. Naproti tomu při dešti může docházet k přenosu bláta mimo staveniště.

Negativní vlivy stavby na psychickou pohodu obyvatel nelze zcela eliminovat, ale lze je významně omezit vhodnou odbornou a technickou opatření. V průběhu výstavby záměru proto budou na stavbě přítají taková technická a organizace opatření, aby rušivé vlivy stavby na obyvatelstvo okolní obytné zástavby byly minimalizovány. Tato opatření budou doplněna systémem kontroly jejich dodržování.

Zvláštní pozornost je třeba věnovat komunikaci mezi dodavateli stavby a obyvateli nejbližších domů. Je třeba zajistit, aby obyvatelé v okolí stavby byli v dostatečném předstihu informováni o délce i charakteru jednotlivých etap výstavby a o době pracovních přestávek. Pro účely informování obyvatel je třeba ustanovit kontaktní osobu, na kterou se budou moci občané obrátit s případnými žádostmi nebo stížnostmi.

Návrh vhodných technických a organizačních opatření na zmínění negativních účinků stavby je uveden v kapitole „D.IV. Charakteristika opatření k prevenci, vyloučení, snížení, popřípadě kompenzací nepříznivých vlivů na životní prostředí“. Za předpokladu dodržení navržených opatření budou vlivy výstavby záměru na psychickou pohodu obyvatel akceptovatelné.

Období provozu

V případě běžného provozu hodnoceného záměru je vlivem psychickou pohodou (nebo také vlivem na rušení pohody) chápáno především ovlivnění obyvatel v okolí záměru hlukem a případně zápachem výfukových plynů v souvislosti s nárůstem dopravy vyvolané dopravní obsluhou objektů záměru.

Nárůst dopravy související s dopravní obsluhou záměru „Polyfunkční domy – Centrum Lužiny“ bude, zejména na počátku jeho provozu, vyvolávat u obyvatel žijících v okolí záměru rušení pohody a nelibost. U citlivějších osob žijících v nejbližším okolí záměru by mohlo docházet k rušení pohody také v důsledku celkově zvýšeného ruchu v jeho okolí.
V souvislosti s výstavbou objektů záměru dojde u některých bytů v okolí záměru ke snížení oslunění a/nebo k omezení dosavadního výhledu. Snížení oslunění, stejně jako omezení výhledu z oken některých bytů, případně výhled z oken přilehlé zástavby sídliště do oken objektů záměru a obráceně, lze rovněž považovat za negativní ovlivnění psychické pohody.

Na základě výsledků specializovaných studií lze konstatovat, že limity pro osvětlení (denní osvětlení, proslunění obytných místností) budou plněny v obou variantách záměru i po jeho realizaci. Snížení osvětlení proto nebude představovat významný vliv na životní prostředí ani veřejné zdraví. Za významný negativní vliv záměru na životní prostředí a zdraví obyvatel nelze v daném kontextu sídliště v intravilánu města považovat ani snížení psychické pohody v důsledku omezení výhledu.

D.I.1.4. Vliv na pracovní prostředí

V důsledku realizace záměru „Polyfunkční domy – Centrum Lužiny” se nepředpokládají žádné významné pozitivní nebo negativní vlivy na pracovní prostředí.

D.I.1.5. Vliv na proslunění a denní osvětlení

V rámci posouzení vlivů záměru na životní prostředí byly pro obě varianty záměru zpracovány studie zaměřené na problematiku oslunění a denního osvětlení (Jakeš, 2013; Jakeš, 2014), jejichž technické zprávy jsou uvedeny v příloze dokumentace číslo 7 (kompletní studie jsou vzhledem k jejich rozsahu uloženy u zpracovatele dokumentace). Součástí přílohy dokumentace číslo 7 je také výkresová dokumentace, ze které jsou zřejmé výšky a vzdálenosti nové výstavby a stávajících staveb uvažovaných v hodnocení.

Cílem obou studií bylo posouzení světelně-technického stavu jak vlastních bytů realizovaných v rámci záměru, tak posouzení vlivů nově navrhovaných staveb záměru na okolní zástavbu z hlediska jejího proslunění a denního osvětlení. Hlavní výsledky a závěry obou světelně technických studií jsou uvedeny níže.

Posouzení hodnot denního osvětlení stávajících domů vlivem výstavby záměru

Pro posouzení byl nejprve proveden výpočet stávajících hodnot denního osvětlení v referenčních místnostech stávajících domů. Pro účely hodnocení denního osvětlení a oslunění byly vybrány nejvíce rizikové místnosti (v přízemí stávajících objektů a v nejблиžší vzdálenosti k nové výstavbě) se započítáním stínění od stávajících překážek (OC Lužiny). Poté byl proveden výpočet při uvažování zastínění nově navrženými domy. Denní osvětlení bylo posuzováno v bodech vzdálených od stěn 1 metr v rozteči přibližně 1000 x 1000 mm na srovnávací rovině 850 mm a také ve dvou kontrolních bodech v polovině hloubky místnosti, vzdálených 1 metr od vnitřních povrchů bočních stěn.

Dle ČSN 73 0580-2 je minimální hodnota činitele denní osvětlenosti, která musí být splněna ve všech bodech v obytné místnosti \(c_{\text{min}} = 0,5 \) % . Současně ve dvou kontrolních bodech v polovině hloubky místnosti, vzdálených 1 metr od vnitřních povrchů bočních stěn, musí být hodnota činitele denní osvětlenosti minimálně 0,75 % a průměrná hodnota činitele denní osvětlenosti z obou těchto bodů nejméně 0,9 %.
Varianta 1

Na základě provedeného hodnocení je možno konstatovat že hodnoty činitele denní osvětlenosti jsou ve všech bodech vyšší, než požaduje ČSN 73 0580-2. Minimální hodnota činitele denní osvětlenosti nepoklesne pod 0,75 % a je vyšší než normou požadovaná minimální hodnota (0,5 %). Činitel denní osvětlenosti ve středu místnosti nepoklesne pod 0,85 % (normová hodnota je 0,75 %) a průměrná hodnota nepoklesne pod 1,02 % (normová hodnota je 0,9 %).

Z výsledků vyplývá, že v souvislosti s výstavbou varianty 1 záměru dojde v referenčních místnostech stávajícího domu k mírnému zhoršení hodnot činitele denní osvětlenosti (dojde k mírnému zastínění stávajících obytných domů). Z provedených výpočtů vyplývá, že i po mírném zastínění místnosti v přízemí domů bude hodnota činitele denní osvětlenosti nad požadovanými normovými hodnotami a lze proto konstatovat, že požadované parametry budou splněny.

Varianta 2

Na základě výpočtů a hodnocení provedených ve studiích „Posouzení denního osvětlení a oslunění stávající a nové zástavby“ (Jakeš, 2013; Jakeš, 2014) je možno konstatovat, že hodnoty činitele denní osvětlenosti jsou ve všech bodech větší, než požaduje norma ČSN 73 0580-2. Z výsledků vyplývá, že výstavbou varianty 2 záměru dojde v referenčních místnostech stávajícího domu k mírnému zhoršení hodnot činitele denní osvětlenosti. Minimální hodnota činitele denní osvětlenosti nepoklesne pod 0,68 % a bude vyšší než normou požadovaná minimální hodnota (0,5%). Činitel denní osvětlenosti ve středu místnosti nepoklesne pod 1,2 (normová hodnota 0,75) a průměrná hodnota nepoklesne pod 1,25 (normová hodnota 0,9). Z uvedených výpočtů vyplývá, že i po mírném zastínění místnost v přízemí domů bude hodnota činitele denní osvětlenosti nad požadovanými normovými hodnotami a lze proto konstatovat, že požadované parametry budou splněny.

Oslunění stávajících domů

V rámci zpracovaných studií oslunění a denního osvětlení bylo posouzeno zastínění stávajících domů vlivem nových obytných domů záměru v referenčních místnostech, které by mohly být vzhledem k nové zástavbě zastíněny nejvíce. Jako referenční místnosti byly vybrány místnosti v přízemí domů, protože jejich proslunění je nejnižší. U všech ostatních místností jsou hodnoty proslunění přiznivější.

Na základě provedeného hodnocení lze pro obě varianty záměru konstatovat, že u stávajících domů (referenčních místností) nedojde vzhledem k vzájemné orientaci nové a stávající zástavby k žádným změnám. Nová výstavba záměru vzhledem ke své severozápadní (respektive severovýchodní) orientaci vůči stávajícím domům stávající zástavbu nestíní. Úroveň oslunění zůstane jak v případě varianty 1 záměru, tak v případě varianty 2 záměru stejná, jako při stávajícím stavu. Pro posuzované případy bylo uvažováno se slepým úhlem 25 stupňů od roviny průčelí domů.
Posouzení denního osvětlení v nově navržených domech záměru

Pro posouzení byl proveden výpočet hodnot denního osvětlení v referenčních místnostech domů. Pro účely hodnocení denního osvětlení a oslunění byly vybrány nejvíce rizikové místnosti (v 1 obytném podlaží objektů a v nejbližší vzdálenosti k původní zástavbě) se započítáním stínění od stávajících překážek. Denní osvětlení bylo posouzováno v bodech vzdálených od stěn 1 metr v rozteči přibližně 1000 x 1000 mm, na srovnávací rovině 850 mm, a také ve dvou kontrolních bodech v polovině hloubky místnosti vzdálených 1 metr od vnitřních povrchů bočních stěn.

Dle ČSN 73 0580-2 je minimální hodnota činitel denní osvětlenosti, která musí být splněna ve všech bodech v obytné místnosti \(e_{\text{min}} = 0,5 \% \). Současně ve dvou kontrolních bodech v polovině hloubky místnosti, vzdálených 1 metr od vnitřních povrchů bočních stěn, musí být hodnota činitele denní osvětlenosti minimálně 0,75 % a průměrná hodnota činitele denní osvětlenosti z obou těchto bodů nejméně 0,9 %.

Varianta 1

Na základě provedeného hodnocení lze konstatovat, že hodnoty činitele denní osvětlenosti jsou ve všech bodech vyšší, než požaduje ČSN 73 0580-2. Minimalní hodnota činitele denní osvětlenosti nepoklesne pod 0,67 % a bude vyšší než normou požadovaná minimální hodnota (0,5 %). Činitel denní osvětlenosti ve středu místnosti nepoklesne pod 0,94 % (normová hodnota je 0,75 %) a průměrná hodnota nepoklesne pod 1,37 % (normová hodnota je 0,9 %). Z uvedených výsledků vyplývá, že všechny požadované hodnoty pro denní osvětlení obytných místností jsou splněny.

Varianta 2

Na základě provedeného hodnocení lze konstatovat, že hodnoty činitele denní osvětlenosti jsou ve všech bodech vyšší, než požaduje ČSN 73 0580-2. Minimalní hodnota činitele denní osvětlenosti nepoklesne pod 0,65 % a bude vyšší než normou požadovaná minimální hodnota (0,5%). Činitel denní osvětlenosti ve středu místnosti nepoklesne pod 1,2 % (normová hodnota je 0,75 %) a průměrná hodnota nepoklesne pod 1,35 % (normová hodnota 0,9 %). Z uvedených výsledků vyplývá, že všechny požadované hodnoty pro denní osvětlení obytných místností jsou splněny.

Posouzení oslunění v nově navržených domech záměru

Ve studiích hodnotících oslunění a denní osvětlení (Jakeš, 2012; Jakeš, 2014) bylo posouzeno rovněž oslunění obou variant nově navržených domů. Pro posouzení byly vybrány referenční místnosti, které s ohledem na oslunění mají nejméně příznivou polohu. Ve všech ostatních místnostech je tedy možno předpokládat lepší výsledky.
Varianta 1

Východní objekt záměru (objekt Beta)

Ve variantě 1 záměru byla v jeho východním objektu vybrána jako referenční místnost garsoniéra v prvním obytném podlaží, která je stíněna stávající zástavbou. Pro posouzení byla použita grafická metoda s využitím diagramu zastínění. Tento diagram platí pro zeměpisnou šířku 50 stupňů a pro kritický den 1. března. V případě varianty 1 záměru vyplývá z provedeného posouzení, že referenční místnost - garsoniéra - je oslněná od 9:00 do 10:35 hodin, což je 95 minut (normou požadovaná hodnota je minimálně 90 minut). Normovaná hodnota oslunění je tedy splněna. Pro posuzovaný případ bylo uvažováno se slepým úhlem 25 stupňů od roviny průčelí domů.

Západní objekt záměru (objekt Alfa)

Protože proslunění ložnic je kratší, než 90 minut je pro posouzení oslunění bytu uvažováno pouze s prosluněním obývacího pokoj. Plocha prosluněného obývacího pokoje tvoří 57 % obytné plochy bytu, což překračuje požadavek ČSN 734301 Obytné budovy, která požaduje proslunění minimálně 30 % obytné plochy bytu. Pro posouzení je uvažováno se slepým úhlem 25 stupňů od roviny průčelí domů.

Z diagramu uvedeného ve studii oslunění a denního osvětlení vyplývá, že referenční místnost - garsoniéra - je v případě varianty 1 záměru oslněná od 8:50 do 10:30 hodin, což je 115 minut (normou požadovaná hodnota je minimálně 90 minut). Normová hodnota je tedy splněna.

Varianta 2

Východní objekt záměru (objekt Beta)

Ve variantě 2 záměru byla v jeho východním objektu vybrána jako referenční místnost garsoniéra v prvním obytném podlaží, která je stíněna stávající zástavbou. Pro posouzení byla použita grafická metoda s využitím diagramu zastínění. Tento diagram platí pro zeměpisnou šířku 50 stupňů a pro kritický den 1. března. Pro posuzovaný případ bylo uvažováno se slepým úhlem 25 stupňů od roviny průčelí domů.

Z diagramu uvedeného ve studii oslunění a denního osvětlení vyplývá, že referenční místnost je v případě varianty 2 záměru oslněná od 8:50 do 10:30 hodin, což je 100 minut (normou požadovaná hodnota je minimálně 90 minut), normová hodnota je tedy splněna. Doba trvání oslunění je v případě varianty 2 záměru o 5 minut delší než v případě varianty 1 záměru.
Západní objekt záměru (objekt Alfa)

D.I.2. Vlivy na ovzduší a klima

D.I.2.1. Metodika modelového výpočtu imisní situace

Model ATEM umožňuje komplekzně hodnotit imisní zatížení v zájmovém území. Modelové výpočty modelem ATEM poskytují následující imisní hodnoty a informace o situaci v hodnoceném území:
- průměrné roční koncentrace sledovaných znečišťujících látek (model umožňuje stanovit koncentrace přibližně 60 organických a anorganických látek),
- maximální krátkodobé koncentrace, respektive maximální hodinové hodnoty,
- doby překročení imisních limitů pro jednotlivé znečišťující příměsi,
- podíly jednotlivých skupin zdrojů,
- příspěvky k celkové koncentraci z jednotlivých směrů proudění,
- směry proudění, kritické pro výskyt zvýšených hodinových koncentrací.

Pro výpočet imisní situace ve výchozím stavu byla použita vstupní data z poslední aktualizace studie „Modelové hodnocení kvality ovzduší na území hl. m. Prahy“, kterou zpracoval ATEM – Ateliér ekologických modelů, s. r. o. v roce 2012 (Píša a kol., 2012). V modelových výpočtech je zahrnut vliv imisního pozadí, to znamená působení více než 18 000 bodových, plošných a lineárních zdrojů znečišťování ovzduší, včetně dálkového přenosu znečištění.

Imisní pozadí je dostupné pro všechny hodnocené znečišťující látky v ovzduší s výjimkou benzo(a)pyrenu, v případě kterého byl vyhodnocen pouze příspěvek automobilové dopravy v zájmovém území. Do hodnot imisní zátěže suspendovanými prachovými částicemi frakce PM_{10} i PM_{2,5} je zahrnuta jak primární prašnost z dopravy, tak sekundární prašnost z dopravních i nedopravních zdrojů (prach zvířený z povrchu větrem, prach z průmyslových ploch apod.).
D.I.2.2. Vlivy na ovzduší v období výstavby

V průběhu výstavby záměru bude na staveništi docházet k dočasnému nepravidelnému provozu stavebních mechanizmů. Na staveništi a také na přilehlých veřejných komunikacích, sloužících k dopravní obsluze stavby, dojde během výstavby k dočasnému nárůstu provozu těžkých nákladních automobilek zajišťujících staveništní dopravu. Vlivy provádění stavby, včetně stavební dopravy, na kvalitu ovzduší v zájmovém území pro realizaci záměru a v jeho okolí, byly vyhodnoceny ve rozptylových studiích (ATEM 2013; ATEM, 2014), které jsou uvedeny v příloze 4 dokumentace. Vyhodnocení vlivů stavební činnosti na kvalitu ovzduší bylo provedeno na základě emisní bilance pro 2. etapu výstavby záměru (realizace zemních prací), protože se bude jednat o emisně nejvýznamnější etapu výstavby - viz kapitola dokumentace „B.III.1.1. Emisní vyhodnocení období výstavby“.

Sledované znečišťující látky a výpočtové (referenční) body

V průběhu hodnocení etapy stavebních prací (zemní práce) lze předpokládat dopad provádění stavby především na imisní zátěž prachem (vyjádřenou koncentracemi suspendovaného aerosolu frakce PM$_{10}$) a na imisní zátěž oxidem dusičitým (NO$_2$). S ohledem na platné imisní limity se jedná o nejvhodnější imisní charakteristiky pro popis vlivu stavby na kvalitu ovzduší. Výpočty byly provedeny v 15 referenčních (výpočtových) bodech umístěných v okolí místa provádění stavebních prací, a to jak u stavenišť, tak podél příjezdových a odjezdových tras v posuzované lokalitě. Umístění výpočtových bodů pro hodnocení vlivu výstavby na kvalitu ovzduší je zřejmé z následujícího obrázku.

Obrázek D1 Rozložení referenčních bodů pro hodnocení stavby
Modelové výpočty reprezentují vliv stavebních prací na kvalitu ovzduší v době průměrného suchého dne, přičemž je uvažováno současně zapojení všech stavebních strojů v dané fázi výstavby. Výsledky výpočtu jsou uvedeny v následující tabulce. Vypočtené hodnoty představují příspěvky k denním koncentracím suspendovaných prachových částic frakce PM\(_{10}\) a příspěvky k maximálním hodinovým koncentracím NO\(_2\) ze stavebních prací.

Vzhledem k charakteru zdroje znečišťování ovzduší (časově omezená produkce znečišťujících látek během výstavby záměru) nejsou hodnoceny průměrné roční koncentrace, nebot v případě průměrných ročních koncentrací znečišťujících látek v ovzduší budou stavební práce málo významné.

Emisní příspěvky benzenu vyčíslené v kapitole dokumentace „B.III.1.1. Emisní vyhodnocení období výstavby“ jsou tak nízké, že jejich imisní vyhodnocení je na hranici přesnosti výpočtového modelu. To je dáno nízkými emisemi benzenu ze spalování nafty v motorech nákladních vozidel a stavebních strojů. Emisní příspěvky k průměrným denním koncentracím benzenu lze tak považovat za zanedbatelné, a proto nejsou v následující tabulce a dalším textu hodnoceny.

V rámci výpočtů modelem ATEM byly vyhodnoceny dopady posuzovaných zemních prací zvlášť pro každý objekt posuzovaného záměru (objekty Alfa a Beta), protože objekty nebudou realizovány současně. V následující tabulce je pro každý výpočtový bod uvedena vždy méně příznivá hodnota imisní zátěže z hodnot vypočtených pro výstavbu každého z posuzovaných objektů samostatně.

Tabulka D1 Imisní příspěvky ze stavební činnosti v průběhu zemních prací - fáze s největším vlivem na imisní situaci (hodnoty jsou uvedeny µg.m\(^{-3}\))

<table>
<thead>
<tr>
<th>Referenční bod</th>
<th>Souběh zemních prací s pilotáží a prováděním spodní hrubé stavby</th>
<th>IH(4) PM({10})</th>
<th>IH(_4) NO(_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Varianta 1</td>
<td>Varianta 2</td>
<td>Varianta 1</td>
</tr>
<tr>
<td>1</td>
<td>4,5</td>
<td>4,6</td>
<td>97,0</td>
</tr>
<tr>
<td>2</td>
<td>7,8</td>
<td>7,9</td>
<td>94,5</td>
</tr>
<tr>
<td>3</td>
<td>8,0</td>
<td>8,2</td>
<td>89,3</td>
</tr>
<tr>
<td>4</td>
<td>6,8</td>
<td>6,9</td>
<td>86,2</td>
</tr>
<tr>
<td>5</td>
<td>4,6</td>
<td>4,7</td>
<td>76,2</td>
</tr>
<tr>
<td>6</td>
<td>2,9</td>
<td>3,0</td>
<td>72,3</td>
</tr>
<tr>
<td>7</td>
<td>4,4</td>
<td>4,5</td>
<td>96,3</td>
</tr>
<tr>
<td>8</td>
<td>7,5</td>
<td>7,6</td>
<td>102,4</td>
</tr>
<tr>
<td>9</td>
<td>10,8</td>
<td>11,1</td>
<td>99,1</td>
</tr>
<tr>
<td>10</td>
<td>11,2</td>
<td>11,4</td>
<td>100,5</td>
</tr>
<tr>
<td>11</td>
<td>9,2</td>
<td>9,4</td>
<td>99,2</td>
</tr>
<tr>
<td>12</td>
<td>2,7</td>
<td>2,8</td>
<td>86,5</td>
</tr>
<tr>
<td>13</td>
<td>2,3</td>
<td>2,3</td>
<td>82,2</td>
</tr>
<tr>
<td>14</td>
<td>3,5</td>
<td>3,6</td>
<td>92,4</td>
</tr>
<tr>
<td>15</td>
<td>4,5</td>
<td>4,5</td>
<td>95,1</td>
</tr>
</tbody>
</table>
Oxid dusičitý – maximální hodinové koncentrace

Z výsledků modelových výpočtů je patrné, že nejvyšší příspěvky maximálních hodinových koncentrací oxidu dusičitého byly v průběhu zemních prací vypočteny v nejbližším okolí staveniště, a to do 102,4 µg.m\(^{-3}\) ve variantě 1 záměru a do 116,9 µg.m\(^{-3}\) ve variantě 2 záměru. Se zvětšující se vzdáleností od stavenišť bude vliv stavební činnosti na kvalitu ovzduší rychle klesat. Poděl odjezdových a příjezdových tras ve větší vzdálenosti od staveniště nepřekročí 1,2 µg.m\(^{-3}\).

Hodnota imisního limitu pro maximální hodinové koncentrace oxidu dusičitého (NO\(_2\)) je stanovena na 200 µg.m\(^{-3}\). Při hodnocení vlivu stavební činnosti na imisní situaci v zájmovém území je třeba mít na paměti, že příspěvky stavební činnosti nelze přímo sčítat s hodnotami imisního pozadí NO\(_2\) v zájmovém území. Vypočtené hodnoty imisního pozadí NO\(_2\) představují hodnoty, které se v daném místě vyskytují za nejméně příznivých emisních a rozptylových podmínek a jsou dosahovány jednou za několik let.

Vyskyt nejvyšších emisí ze stavební činnosti se v naprosté většině případů odehráje v jiné době, než se vyskytnou maximální emise z ostatních zdrojů (maxima emisí ze stavební činnosti se v naprosté většině případů můžeme s maximy emisí z ostatních zdrojů). Lze tedy důvodně předpokládat, že k překročení hranice 200 µg.m\(^{-3}\) bude docházet velmi výjimečně. Protože legislativa toleruje překročení imisního limitu pro hodinové koncentrace NO\(_2\) v 18 případech za rok, lze důvodně předpokládat, že k překračování imisního limitu pro hodinové koncentrace NO\(_2\) vlivem stavební činnosti v zájmovém území nedojde.

Suspendované částice frakce PM\(_{10}\) – průměrné denní koncentrace

Nejvyšší příspěvky stavby ke koncentracím suspendovaných částic frakce PM\(_{10}\) (prachu) byly během 2. etapy výstavby záměru vypočteny v nejbližším okolí staveniště. Nejvyšší příspěvky stavebních prací byly vypočteny ve výpočtových bodech 9 až 11, a to pro variantu 1 záměru na úrovni 9,2 – 11,2 µg.m\(^{-3}\) a pro variantu 2 na úrovni 9,4 – 11,4 µg.m\(^{-3}\). Se zvyšující se vzdáleností od stavenišť bude vliv stavební činnosti na kvalitu ovzduší rychle klesat. Podél odjezdových a příjezdových tras staveništní dopravy nepřekročí 0,3 µg.m\(^{-3}\).

Imisní limit pro 24hodinové koncentrace suspendovaných částic frakce PM\(_{10}\) je stanoven na 50 µg.m\(^{-3}\), tolerováno je 35 překročení za rok. Na základě pětiletých průměrů koncentrací znečišťujících látek v ovzduší a výsledků měření na blízké stanici imisního monitoringu Praha 5 – Stodůlky (ASTO) lze konstatovat, že tento limit není ve výchozím stavu překročen.

V průběhu provádění stavebních prací lze v hodnocené lokalitě očekávat navýšení denních koncentrací PM\(_{10}\) o jednotky µg.m\(^{-3}\). Výše uvedené vypočtené hodnoty odrážejí teoretický stav, kdy budou v provozu všechny stavební stroje, a to jak v prostoru staveniště, tak automobily na okolních komunikacích. Skutečné imisní příspěvky tedy budou po naprostou většinu trvání hodnocené etapy výstavby záměru výrazně nižší. V dalších etapách výstavby jsou přitom očekávány imisní hodnoty (často i výrazně) nižší než během provádění zemních prací.
Pro snížení celkového dopadu období výstavby na imisní zátěž prachem bude nutno v průběhu stavebních prací dodržovat základní opatření ke snížení prašnosti, jako je časté kropení prašných ploch staveniště v období sucha, mokré čištění komunikací, zvýšení frekvence úklidu a zejména důsledné čištění vozidel odjíždějících z prostoru staveniště. Přijetím těchto opatření a jejich realizací v průběhu stavby lze významně snížit sekundární prašnost. Vhodná opatření jsou navržena níže.

Opatření pro omezení vlivů stavebních prací na kvalitu ovzduší

Pro omezení vlivů stavební činnosti na kvalitu ovzduší jsou navržena následující opatření:

- v případě dlouhotrvajícího sucha a silnějšího větru omezit stavební práce, případně zamezit šíření prachových částic do okolí clonami po obvodu staveniště
- v průběhu celé výstavby provádět důsledné čištění a v případě potřeby mytí aut před výjezdem na komunikace
- pravidelně čistit povrch příjezdových a odjezdových tras v blízkosti staveniště
- v době délky trvajícího sucha zajistit pravidelné skrápění staveniště
- minimalizovat pojezd nákladních vozidel po nezpevněné ploše staveniště, případně nejvíce pojižděné úseky na staveništi zepvit
- v době nepříznivých rozptylových podmínek zamezit souběhu stavebních mechanismů s vysokým výkonem.

D.I.2.3.1. Sledované znečišťující látky

S ohledem na stanovené imisní limity dle zákona o ochraně ovzduší a charakter posuzovaného záměru byly v rámci modelového výpočtu sledovány průměrné roční koncentrace čtyř znečišťujících látek: oxidu dusičitého (NO₂), prachu (suspendovaných částic frakce PM₁₀ a frakce PM₂,₅), benzenu a benzo(a)pyrenu. Dále byly vypočteny maximální hodinové koncentrace oxidu dusičitého a maximální denní koncentrace suspendovaných částic frakce PM₁₀. Výsledné imisní charakteristiky byly vypočteny odděleně pro všechny třídy stability a rychlosti větru, tedy pro každý typ rozptylových podmínek, které se mohou vyskytovat v zájmovém území.

D.I.2.3.2. Výpočtová síť a výpočtové (referenční) body pro období provozu

Pro vyhodnocení imisní zátěže v zájmovém území záměru „Polyfunkční domy – Centrum Lužiny“ bylo pro období provozu zvoleno obdélníkové území o rozloze zhruba 1,1 km². Výpočetní oblast byla zvolena tak, aby zahrnovala jak samotný záměr, tak i přilehlé okolí, které by mohlo být jeho provozem zasaženo. Modelové hodnocení kvantity ovzduší bylo v posuzovaném území provedeno v pravidelné trojúhelníkové síti referenčních bodů s krokem síť 50 m. Modelové výpočty byly provedeny pro 539 referenčních bodů.
Referenční bod (RB) přitom představuje místo v hodnoceném území, ve kterém jsou vypočteny charakteristiky znečištění ovzduší pro jednotlivé druhy znečišťujících látek. Každý z bodů je definován svými plošnými charakteristikami v souřadném systému X, Y a výškovým parametrem Z, který je reprezentován nadmořskou výškou. Graficky je umístění referenčních bodů v zájmovém území pro výstavbu záměru znázorněno v následujícím obrázku.

Obrázek D2 Rozložení referenčních bodů v modelovém hodnocení budoucí kvality ovzduší v období provozu

![Referenční bodová mapa](image)

D.1.2.3.3. Varianty řešení

Vlivy záměru „Polyfunkční domy – Centrum Lužiny“ na kvalitu ovzduší v období provozu byly hodnoceny na základě modelových výpočtů v následujících variantách:

- Výhledová imisní situace v ovzduší v zájmovém území bez vlastního záměru (výchozí stav). Tato varianta hodnotí imisní situaci v lokalitě v referenčním roce bez vlivu hodnoceného záměru (to znamená bez výstavby záměru).
- Vliv běžného provozu záměru na imisní situaci v referenčním roce. Vliv záměru je pro průměrné roční koncentrace oxidu dusičitého (NO₂), suspendovaných částic frakce PM₁₀ a frakce PM₂,₅, benzenu a benzo(a)pyrenu popsán jako rozdíl mezi stavem bez záměru a stavem se záměrem. Pro maximální hodinové koncentrace oxidu dusičitého a pro maximální denní koncentrace suspendovaných částic frakce PM₁₀ je popsán jako absolutní vypočtené hodnoty pro stav bez záměru a pro stav se záměrem.
D.1.2.3.4. Způsob prezentace výsledků modelových výpočtů

Výsledky modelových výpočtů imisní situace (kvality ovzduší) v zájmovém území pro realizaci záměru jsou v plném rozsahu uvedeny v rozptylových studiích „Polyfunkční domy – Centrum Lužiny, Modelové hodnocení kvality ovzduší“ (ATEM, 2013; ATEM, 2014), které jsou v plném rozsahu uvedeny v příloze číslo 4 dokumentace.

Výsledky imisních modelových výpočtů jsou v rozptylových studiích prezentovány jednak v jejich textové části a jednak v jejich přílohou textě v formě map imisního zatižení. Imisní koncentrace znečišťujících látek jsou v mapách imisního zatižení znázorněny pomocí polí vypočtených koncentrací sledovaných znečišťujúcích látek v ovzduší. Vzhledem ke značnému počtu a rozsahu map imisního zatižení, nejsou tyto mapy uváděny v textu dokumentace. Lze je nalézt v v příloze číslo 4 dokumentace.

D.1.2.3.5. Imisní limity

Výsledky modelových výpočtů reprezentující koncentrace znečišťujících látek ve volném ovzduší (imisní koncentrace znečišťujících látek) jsou hodnoceny ve vztahu k imisním limitům, které určují nejvyšší přípustnou úroveň znečištění ovzduší. Jejich hodnoty jsou pro jednotlivé znečišťující látky stanoveny zákonem č. 201/2012 Sb., o ochraně ovzduší. Předpokládá se, že v době plánovaného uvedení záměru do provozu budou platit imisní limity pro ochranu zdraví uvedené v následující tabulce.

Tabulka D2 Imisní limity pro ochranu zdraví platné pro znečišťující látky hodnocené v rozptylové studiích (dle zákona č. 201/2012 Sb.)

<table>
<thead>
<tr>
<th>Látka</th>
<th>Doba průměrování</th>
<th>Imisní limit</th>
<th>Maximální tolerovaný počet překročení za rok</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>kalendářní rok</td>
<td>40 µg.m⁻³</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1 hod</td>
<td>200 µg.m⁻³</td>
<td>18</td>
</tr>
<tr>
<td>Benzen</td>
<td>kalendářní rok</td>
<td>5 µg.m⁻³</td>
<td>–</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>kalendářní rok</td>
<td>40 µg.m⁻³</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1 den (24 hodin)</td>
<td>50 µg.m⁻³</td>
<td>35</td>
</tr>
<tr>
<td>PM₂,₅</td>
<td>kalendářní rok</td>
<td>25 µg.m⁻³</td>
<td>–</td>
</tr>
<tr>
<td>Benzo(a)pyren</td>
<td>1 rok</td>
<td>1 ng.m⁻³</td>
<td>–</td>
</tr>
</tbody>
</table>

Poznámka: Koncentrace PM₁₀ se stanovuje pro celkový obsah v suspendovaných částicích velikostní frakce 10 µm.

V případě krátkodobých (hodinových či denních) koncentrací je pro některé látky stanoven vedle imisního limitu také tolerovaný počet překročení limitní hodnoty v průběhu kalendářního roku. Zákon číslo č. 201/2012 Sb., o ochraně ovzduší připouští překročení imisního limitu pro hodinový průměr koncentrace oxidu dusičitého (NO₂) po 18 hodin za rok a limitu pro maximální denní koncentrace suspendovaných častíc frakce PM₁₀ pak 35x za rok. To znamená, že úroveň imisního limitu nesmí překročit devatenáctá nejvyšší naměřená hodinová koncentrace NO₂ ani třicátá šestá nejvyšší naměřená denní koncentrace suspendovaných častíc frakce PM₁₀.
D.1.2.3.6. Vyhodnocení výhledových imisních situací matematickým modelem ATEM

Vlivy záměru „Polyfunkční domy – Centrum Lužiny“ na kvalitu ovzduší v zájmovém území po jeho uvedení do běžného provozu byly hodnoceny pomocí modelu ATEM, který je ve vyhlášce č. 330/2012 Sb. uveden jako jedna z referenčních metod pro stanovení rozptylu znečišťujících látek v ovzduší.

V rámci rozptylových studií byly jak pro variantu 1 záměru, tak pro variantu 2 záměru matematicky modelovány imisní situace (kvalita ovzduší) v zájmovém území výždy pro výhledový stav bez realizace záměru a výhledový stav v témže roce s realizací záměru. V rámci řešeného území byly pro modelové výpočty aktualizovány sestavy lineárních zdrojů znečišťování a byly doplněny komunikační úseky v nejbližším okolí navrhovaného záměru. Výsledky modelování kvality ovzduší jsou pro sledované znečišťující látky uvedeny níže.

Pro hodnocení kvality ovzduší v zájmovém území pro realizaci záměru byly použity u všech uvažovaných znečišťujících látek jejich průměrné roční koncentrace (IH$_r$) a v případě oxidu dusičitého (NO$_2$) a suspendovaných částic frakce PM$_{10}$ také maximální hodinové koncentrace (IH$_h$), respektive maximální denní koncentrace (IH$_d$). Pro hodnocení vlivů posuzovaného záměru na imisní situaci v zájmovém území jsou z vypočtených imisních hodnot nejvhodnější průměrné roční koncentrace, neboť zohledňují jak vliv emisí, tak i průběh meteorologických parametrů během celého roku.

Maximální krátkodobé koncentrace naproti tomu představují hodnoty, vypočtené za nejhorších možných emisních a rozptylových podmínek, což mimo jiné znamená předpoklad, že všechny zdroje jsou v provozu současně. Dále jsou pro každé místo (referenční bod) samostatně modelovány nejhorší meteorologické podmínky (ze všech vypočtených kombinací je uvažována vždy ta, která je spojena s nejvyšší koncentrací v daném bodě). Daná kombinace emisních a meteorologických podmínek tak nemusí během roku (či několika let) vůbec nastat. Stejně tak se však může jednat o kombinaci, která se v daném místě vyskytuje opakovaně.

Při použití maximálních krátkodobých koncentrací je přitom třeba mít vždy na paměti, že jejich hodnoty jsou sice prezentovány pro celé území na jednom grafickém výstupu, ale jsou vypočteny pro každý bod při jiných podmínkách a nenastanou v celém území současně. Výkresy maximálních krátkodobých koncentrací (IH$_h$) tedy ukazují nejvyšší vypočtené hodnoty v jednotlivých místech, z nichž každá může nastat v jiné době a za jiných rozptylových podmínek. Hodnoty IH$_h$ proto nepředstavují souvislé pole, jako je tomu u ročních hodnot.

Vzhledem k tomu, že očekávané intenzity automobilové dopravy vyvolané provozem varianty 1 záměru v roce 2015 se mohou lišit od intenzity dopravy vyvolané provozem stejné varianty záměru v roce 2018 jen zcela nevýznamně a protože lze očekávat mírné zlepšování imisních parametrů automobilů v čase, je možné pro hodnocení vlivů varianty 1 záměru na kvalitu ovzduší použít (také s ohledem na dosažitelnou přesnost matematického modelování imisních koncentrací znečišťujících látek v ovzduší) příspěvky emisí znečišťujících látek z provozu automobilové dopravy záměru vypočtené pro rok 2015.
Oxid dusičitý (NO$_2$)

Oxid dusičitý (NO$_2$) - průměrné roční koncentrace – výhledový stav bez záměru

Přímo v lokalitě plánované výstavby záměru se budou vypočtené hodnoty průměrných ročních koncentrací oxidu dusičitého pohybovat ve výhledovém roce 2018 ve stavu před výstavbou navrhaného záměru v úrovni kolem 20,5 µg.m$^{-3}$.

Nejvyšší hodnoty byly vypočteny v západní části hodnoceného území v blízkosti křižovatky ulic Jeremiášova a Mukařovského, kde se projevuje vliv automobilové dopravy. V této lokalitě lze očekávat koncentrace NO$_2$ v úrovni do 21,5 µg.m$^{-3}$. Koncentrace nad 21 µg.m$^{-3}$ lze dále zaznamenat v centrální části území mezi Jeremiášovou a Archeologickou ulicí. Nejnižší hodnoty byly vypočteny zejména v jihovýchodním okraji výpočtové oblasti, kde budou klesat pod 19 µg.m$^{-3}$.

Hodnota imisního limitu pro průměrné roční koncentrace oxidu dusičitého byla pro hodnocený výhledový stav uvažována ve výši 40 µg.m$^{-3}$. Jak ukazují výsledky modelových výpočtů, je tento limit v zájmovém území splněn.

Oxid dusičitý (NO$_2$) průměrné roční koncentrace - příspěvek záměru

Varianta 1

Nejvyšší nárůst průměrných ročních koncentrací oxidu dusičitého byl vypočten v nejbližším okolí navrhaných polyfunkčních domů (zejména v okolí západního objektu). Jak ukazují výsledky modelových výpočtů, zvýší se v tomto prostoru průměrné roční koncentrace oxidu dusičitého nejvýše o 0,11 µg.m$^{-3}$.

Se zvyšující se vzdáleností od objektů záměru podél hlavních příjezdových a odjezdových tras (ulice Archeologická, Brdičkova, Podpěrova a Piškova) bude vliv záměru postupně klesat. Podél nejbližších napojovacích tras se příspěvky průměrných ročních koncentrací oxidu dusičitého budou pohybovat nad hranicí 0,1 µg.m$^{-3}$, podél navazujících ulic Mukařovského nepřekročí hodnotu 0,05 µg.m$^{-3}$ a v blízkosti Jeremiášovy ulice budou příspěvky klesat pod 0,04 µg.m$^{-3}$.

Jako ukazují výsledky modelových výpočtů, nedojde vlivem uvedení záměru do provozu v žádné části zájmového území k překročení stanoveného imisního limitu (40 µg.m$^{-3}$) a nárůst imisní zátěže nepřekročí 0,3 % limitní hodnoty. Příspěvek z provozu náhradních zdrojů elektrické energie nepřekročí ve výpočtové oblasti 0,001 µg.m$^{-3}$. To je dáno vysokou polohou výfuků diesele aggregátů a krátkou roční provozní dobou.

Varianta 2

Nejvyšší nárůst průměrných ročních koncentrací oxidu dusičitého byl vypočten v blízkosti západního objektu záměru, kde bude dosahovat nejvýše 0,07 µg.m$^{-3}$. Se zvážení od záměru podél hlavních příjezdových a odjezdových tras (Archeologická, Brdičkova, Podpěrova, Piškova) budou koncentrace oxidu dusičitého postupně klesat.
Podél nejbližších napojovacích tras se příspěvky budou pohybovat od 0,04 do 0,06 µg.m\(^{-3}\), podél navazující Mukařovského ulice nepřekročí 0,04 µg.m\(^{-3}\) a v blízkosti Jeremiášovy ulice již budou klesat pod 0,03 µg.m\(^{-3}\).

Jak ukazují výsledky modelových výpočtů, nebude vlivem uvedení záměru do provozu v žádné části zájmového území překročen stanovený imisní limit, nárůst imisní zátěže nepřekročí 0,18 % limitní hodnoty. Příspěvek z provozu náhradních zdrojů elektrické energie nepřekročí ve výpočtové oblasti 0,001 µg.m\(^{-3}\). To je dánou vysokou polohou výfuků dieselylegatů a krátkou roční provozní dobou.

Oxid dusičitý (NO\(_2\)) maximální hodinové koncentrace – výhledový stav bez záměru

Přímo v místě hodnoceného záměru (na ploše navrhovaných domů) byly ve stavu bez výstavby záměru vypočteny pro rok 2018 hodnoty maximálních hodinových koncentrací NO\(_2\) v rozmezí přibližně 115 – 120 µg.m\(^{-3}\). Vyšší koncentrace jsou patrné ve sčítě vlivu významnějších lokálních stacionárních zdrojů v území (výtopna Lužiny IV., V. a VI.).

Nejvyšší koncentrace NO\(_2\) (přes 130 µg.m\(^{-3}\)) lze očekávat především v blízkosti těchto zdrojů v západní a centrální části zájmového území. Na převládající ploše se koncentrace budou pohybovat v rozmezí od 110 do 120 µg.m\(^{-3}\). Nejnižší hodnoty koncentrací byly vypočteny ve východní části výpočtové oblasti podél Jeremiášovy ulice, kde se lokálně mohou pohybovat pod hranicí 100 µg.m\(^{-3}\).

Hodnota imisního limitu pro maximální hodinové koncentrace oxidu dusičitého je pro výhledový stav uvažována ve výši 200 µg.m\(^{-3}\). Jak ukázaly výsledky modelových výpočtů, bude v prostoru hodnoceného záměru imisní limit splněn (koncentrace se budou pohybovat na úrovni 57,5 až 60 % imisního limitu). Hodnoty nad 200 µg.m\(^{-3}\) nebyly na řešeném území zaznamenány.

Při interpretaci vypočtených hodnot maximálních hodinových koncentrací je třeba mít na paměti, že se jedná o modelové hodnoty, které jsou vypočteny při současném působení všech emisních zdrojů, špičkové dopravní zátěže a při nejméně příznivých meteorologických podmínkách. Ve skutečnosti tato situace nastává s malou pravděpodobností a měřené hodinové koncentrace se pohybují vesměs pod vypočtenými hodnotami. Modelové hodnoty tak spíše ukazují náchylnost území k výskytu vysokých koncentrací.

Oxid dusičitý (NO\(_2\)) maximální hodinové koncentrace – stav po výstavbě

Varianta 1

Vypočtená změna polohy izolinií imisní zátěže (maximálních hodinových koncentrací oxidu dusičitého) vyvolaná běžným provozem záměru (bez vlivu náhradních zdrojů elektrické energie) v jeho blízkém a vzdáleném okolí je poměrně malá. Nejvyšší nárůst hodnot maximálních hodinových koncentrací byl vypočten pouze lokálně (severně od navrhovaných objektů záměru) a nepřekročí úroveň 0,88 µg.m\(^{-3}\).
Vlivem uvedení záměru do provozu nedojde v žádné části zájmového území k významnému nárůstu imisní zátěže oxidem dusičitým. V území dojde pouze k minimálním změnám průběhu jednotlivých izolinii. V žádném referenčním bodě nebylo vypočteno zvýšení koncentrace vlivem provozu záměru nad hranici 200 µg.m⁻³. To znamená, že provoz záměru nebude mít vliv na překročení hodnoty imisního limitu.

Při interpretaci výsledků je třeba si uvědomit, že vypočtené hodnoty představují nejvyšší příspěvky k hodinovým koncentracím samostatného zdroje, nelze je tak přičítat k maximálním hodinovým koncentracím ze všech zdrojů imisního pozadí ve výchozím stavu.

Pole vypočtených maximálních hodinových koncentrací NO₂ se v případě spuštění náhradních zdrojů elektrické energie při výpadku dodávky elektrické energie prakticky nezmění. Samotné příspěvky z provozu dieseleagregátů byly vypočteny na úrovni do 4,9 µg.m⁻³, což je dáno zejména nízkou emisní výdatností zdrojů a velkou výškou objektů, na jejichž střeše budou umístěny výfuky náhradních zdrojů.

Ačkoliv není třeba očekávat vlivem provozu záměru žádnou změnu z hlediska dodržování imisního limitu, bude vhodné v rámci snížení dopadu na kvalitu ovzduší zajistit, aby náhradní zdroje elektrické energie nebyly během pravidelných zkoušek funkčnosti spuštěny současně a aby tyto zkoušky probíhaly mimo období výskytu nepříznivých rozptylových podmínek.

Varianta 2

Vypočtená změna polohy izolinii maximálních hodinových koncentrací oxidu dusičitého vyvolaná běžným provozem záměru (bez vlivu náhradních zdrojů elektrické energie) v jeho blízkém a vzdáleném okolí je poměrně malá. Nejvyšší nárůst hodnot maximálních hodinových koncentrací nepřekročí 0,42 µg.m⁻³ a byl vypočten pouze lokálně – severně od navrhovaných objektů.

Vlivem uvedení záměru do provozu nedojde v žádné části zájmového území k významnému nárůstu imisní zátěže oxidem dusičitým. V území dojde pouze k minimálním změnám průběhu jednotlivých izolinii. V žádném referenčním bodě nebylo vypočteno zvýšení koncentrace vlivem provozu záměru nad hranici 200 µg.m⁻³. To znamená, že provoz záměru nebude mít vliv na překročení hodnoty imisního limitu.

Při interpretaci výsledků je třeba si uvědomit, že vypočtené hodnoty představují nejvyšší příspěvky k hodinovým koncentracím samostatného zdroje, nelze je tak přičítat k maximálním hodinovým koncentracím ze všech zdrojů imisního pozadí ve výchozím stavu.

Pole vypočtených maximálních hodinových koncentrací NO₂ se v případě spuštění náhradních zdrojů elektrické energie při výpadku dodávky elektrické energie prakticky nezmění. Samotné příspěvky z provozu dieseleagregátů byly vypočteny na úrovni do 2,5 µg.m⁻³, což je dáno zejména nízkou emisní výdatností zdrojů a velkou výškou objektů, na jejichž střeše budou umístěny výfuky náhradních zdrojů.
Ačkoliv není třeba očekávat vlivem provozu záměru žádnou změnu z hlediska dodržování imisního limitu, bude vhodné v rámci snížení dopadu na kvalitu ovzduší zajistit, aby náhradní zdroje elektrické energie nebyly během pravidelných zkoušek funkčnosti spuštěny současně a aby tyto zkoušky probíhaly mimo období výskytu nepříznivých rozptylových podmínek.

Benzen

Benzen průměrné roční koncentrace – výhledový stav bez záměru

Přímo v místě hodnoceného záměru byly vypočteny hodnoty průměrných ročních koncentrací benzenu pro výhledový stav v roce 2018 před výstavbou navrhovaného záměru v rozmezí od 0,58 do 0,65 µg.m⁻³. Nejvyšší koncentrace byly vypočteny v oblasti křižovatky ulic Mukařovského a Jeremiášova, kde se budou koncentrace pohybovat do 0,8 µg.m⁻³. Jedná se o území ovlivněné nejvýznamnějšími dopravními zdroji v lokalitě.

Hodnoty nad 0,7 µg.m⁻³ byly vypočteny podél ulice Mukařovského. Hodnoty nad 0,6 µg.m⁻³ byly vypočteny podél ostatních komunikací v území. Nejnižší průměrné roční koncentrace benzenu v ovzduší pak byly vypočteny při jihovýchodní hranici výpočtové oblasti. V této části zájmového území se budou koncentrace benzenu pohybovat v úrovni do 0,5 µg.m⁻³.

Imisní limit pro průměrné roční koncentrace benzenu byl pro hodnocený výhledový stav uvažován ve výši 5 µg.m⁻³. Jak prokázaly modelové výpočty, nebude v žádné části zájmového území tento limit překročen.

Benzen průměrné roční koncentrace - příspěvek záměru

Varianta 1

Nejvyšší nárůst průměrných ročních koncentrací benzenu byl vypočten v blízkosti navrhovaných garáží západního objektu, kde lze v důsledku realizace záměru očekávat zvýšení koncentrací benzenu v úrovni do 0,037 µg.m⁻³. V blízkosti hlavních napojovacích tras lze zaznamenat nárůst imisní zátěže nad 0,02 µg.m⁻³, podél Archeologické ulice nad 0,01 µg.m⁻³, podél ulice Mukařovského a Jeremiášovy nepřekročí nárůst 0,01 µg.m⁻³. Se zvyšující se vzdáleností od objektů záměru se budou příspěvky postupně snižovat, při hranici území klesají pod 0,005 µg.m⁻³.

V žádném referenčním bodě nedojde vlivem zprovoznění navrhovaného záměru k překročení imisního limitu. Nejvyšší příspěvky byly vypočteny na úrovni do 0,75 % limitních hodnot.

Varianta 2

Nejvyšší nárůst průměrných ročních koncentrací benzenu byl vypočten v blízkosti navrhovaných garáží západního objektu, a to do 0,024 µg.m⁻³. V blízkosti hlavních napojovacích tras lze zaznamenat nárůst imisní zátěže nad 0,01 µg.m⁻³, podél ulice Mukařovského a Jeremiášovy nepřekročí nárůst 0,01 µg.m⁻³. S rostoucí vzdáleností od objektů záměru se budou příspěvky postupně snižovat.
V žádném referenčním bodě nedojde vlivem zprovoznění navrhovaného záměru k překročení imisního limitu. Nejvyšší příspěvky byly vypočteny na úrovni do 0,48 % imisního limitu.

Suspendované částice frakce PM_{10}

Suspendované částice frakce PM_{10} průměrné roční koncentrace - výhledový stav bez záměru

Přímo v místě plánovaného záměru lze v roce 2018 očekávat ve stavu před výstavbou záměru hodnoty průměrných ročních koncentrací suspendovaných částic frakce PM_{10} v rozmezí v rozmezí 22 – 23 µg.m^{-3}. Nejvyšší hodnoty lze v území očekávat v blízkosti křížovatky ulic Jeremiášova a Mukařovského, kde byly vypočteny hodnoty mírně nad 28 µg.m^{-3}. Podél hlavních komunikací v území budou koncentrace překračovat úroveň 24 µg.m^{-3}, s rostoucí vzdáleností od komunikací je patrný pokles koncentrací. Nejnižší hodnoty koncentrací byly vypočteny v okrajových partiích posuzované lokality, při jihovýchodní hranici výpočtové oblasti, kde budou klesat pod 20 µg.m^{-3}.

Ve vypočtených hodnotách průměrných ročních koncentrací suspendovaných částic frakce PM_{10} je zahrnuta kromě primární emise z dopravních zdrojů i sekundární prašnost, včetně takzvané nedopravné složky (prach zvířený z povrchu větrem, prach z průmyslových ploch a podobně).

Imisní limit pro průměrné roční koncentrace suspendovaných částic frakce PM_{10} je stanoven ve výši 40 µg.m^{-3}. Jak ukazují výsledky modelových výpočtů, nebude v žádné části zájmového území tento limit překročen.

Suspendované částice frakce PM_{10} - průměrné roční koncentrace - příspěvek záměru

Varianta 1

Nejvyšší nárůst průměrných ročních koncentrací suspendovaných částic frakce PM_{10} v důsledku realizace záměru byl vypočten v nejbližším okolí objektů záměru a v okolí hlavních odjezdových a příjezdových tras, to znamená podél Brdičkovy, Podpěrové a Archeologické ulice. Hodnoty se v této části zájmového území mohou zvýšit v úrovni do 0,18 µg.m^{-3}.

Podél východní větve Archeologické ulice a podél ulice Mukařovského se budou příspěvky záměru pohybovat do 0,1 µg.m^{-3}. V okolí ostatních příjezdových a odjezdových tras vyvolané dopravy záměru nepřekročí příspěvek záměru 0,05 µg.m^{-3}.

Jak ukázaly výsledky modelových výpočtů, nedojde v žádném referenčním bodě vlivem provozu hodnoceného záměru k překročení stanoveného imisního limitu. Nejvyšší nárůst průměrných ročních koncentrací suspendovaných částic frakce PM_{10} v důsledku realizace záměru byl vypočten do 0,45 % imisního limitu. Příspěvek z provozu náhradních zdrojů elektrické energie byl vypočten pod hranicí 0,001 µg.m^{-3}.
Varianta 2

Nejvyšší nárůst průměrných ročních koncentrací suspendovaných částic frakce PM$_{10}$ v důsledku realizace záměru byl vypočten v blízkosti navrhovaných budov a podél hlavních odjezdových a přjezdových tras v ulicích Brdičkova, Podpěřova a Archeologická. Hodnoty průměrných ročních koncentrací suspendovaných částic frakce PM$_{10}$ se v této části zájmového území mohou zvýšit v úrovni do 0,17 µg.m$^{-3}$.

Podél východní větve Archeologické ulice nepřekročí příspěvky záměru k průměrným ročním koncentracím suspendovaných částic frakce PM$_{10}$ hodnotu 0,1 µg.m$^{-3}$, stejně jako podél ulice Mukařovského. Podél ostatních přjezdových a odjezdových tras vyvolané dopravy záměru nepřekročí příspěvek záměru 0,05 µg.m$^{-3}$.

Jak ukázaly výsledky modelových výpočtů, nedojde v žádném referenčním bodě vlivem provozu hodnoceného záměru k překročení stanoveného imisního limitu. Nejvyšší nárůst průměrných ročních koncentrací suspendovaných částic frakce PM$_{10}$ v důsledku realizace záměru byl vypočten do 0,43 % imisního limitu. Příspěvek z provozu náhradních zdrojů elektrické energie byl vypočten pod hranicí 0,001 µg.m$^{-3}$.

Suspendované částice frakce PM$_{10}$ – maximální denní koncentrace - východový stav bez záměru

Přímo v místě plánovaného záměru lze ve výhledovém stavu v roce 2018 bez realizace záměru očekávat hodnoty maximálních denních koncentrací suspendovaných částic frakce PM$_{10}$ v rozmezí od 190 do 200 µg.m$^{-3}$. Nejvyšší hodnoty byly vypočteny v západní části zájmového území v blízkosti křižovatky ulic Jeremiášova a Mukařovského, kde mohou dosahovat úroveň až 245 µg.m$^{-3}$. Naopak nejnižší hodnoty koncentrací byly vypočteny ve východní části hodnoceného území, kde mohou klesat pod 180 µg.m$^{-3}$.

Vypočtené hodnoty představují koncentrace, které se mohou vyskytovat v lokalitě při nejhorších emisních a imisních podmínkách a nejsou běžně dosahovány. Imisní limit pro průměrné denní koncentrace suspendovaných částic frakce PM$_{10}$ je stanoven ve výši 50 µg.m$^{-3}$. Vypočtené hodnoty však nelze přímo porovnávat s hodnotou stanoveného imisního limitu, protože pro jeho splnění je určující počet překročení limitní hodnoty během roku (tolerováno je 35 překročení tj. 9,6 % ročního období).

To znamená, že dle platné legislativy je limit pro 24hodinové koncentrace překročen tam, kde se hodnoty vyšší než 50 µg.m$^{-3}$ vyskytují častěji než 35× za rok. V prostoru hodnoceného záměru je třeba očekávat překračování úrovně imisního limitu v rozmezí od 5,3 do 5,8 % roční doby. Častěji překračování úrovně imisního limitu ve více než povolených 9,6 % roční doby nebylo na posuzovaném území zaznamenáno. Stejně tak měření na blízké stanici imisního monitoringu nebo pětileté klouzavé průměry publikované ČHMÚ ukazují na podlimitní hodnoty v území.
Suspendované částice frakce PM\textsubscript{10} – maximální denní koncentrace – výhledový stav po realizaci záměru

Varianta 1

Změny v průběhu jednotlivých izolíní maximálních denních koncentrací suspendovaných částic frakce PM\textsubscript{10} budou málo výrazné. Nejvyšší nárůst koncentrací byl vypočten na úrovni 1,05 µg.m-3, a to podél západní větve ulice Archeologická.

Příspěvky provozu záměru k imisní situaci v zájmovém území jsou vzhledem k referenčnímu stavu a k platnému imisnímu limitu velmi nízké. V žádném referenčním bodě nebylo vlivem provozu záměru vypočteno zvýšení počtu překročení hodnoty imisního limitu. Příspěvek z provozu samotných dieselylregátů nepřekročí 0,001 µg.m-3. Imisní situace v lokalitě tak z hlediska maximálních denních koncentrací suspendovaných částic frakce PM\textsubscript{10} nebude dlouhodobě ovlněna.

Varianta 2

Změny v průběhu jednotlivých izolíní maximálních denních koncentrací suspendovaných částic frakce PM\textsubscript{10} jsou minimální. Nejvyšší nárůst koncentrací byl vypočten na úrovni 0,97 µg.m-3, a to podél západní větve ulice Archeologická. V žádném referenčním výpočtovém bodě nebylo v souvislost s provozem záměru vypočteno zvýšení počtu překročení hodnoty imisního limitu o jeden nebo více případů za rok.

Příspěvek z provozu samotných dieselylregátů nepřekročí 0,001 µg.m-3. Imisní situace v lokalitě tak z hlediska maximálních denních koncentrací suspendovaných částic frakce PM\textsubscript{10} nebude dlouhodobě ovlněna.

Suspendované částice frakce PM\textsubscript{2.5}

Suspendované částice frakce PM\textsubscript{2.5} průměrné roční koncentrace - výhledový stav bez záměru

Přímo v místě plánovaného záměru lze v roce 2018 ve stavu před výstavbou záměru očekávat hodnoty průměrných ročních koncentrací suspendovaných částic frakce PM\textsubscript{2.5} v úrovni do 13,8 µg.m3. Nejvyšší hodnoty průměrných ročních koncentrací PM\textsubscript{2.5} byly vypočteny v blízkosti křižovatky ulic Mukařovského a Jeremiášova v západní části území, kde budou dosahovat až 15,4 µg.m3. Podél hlavních komunikací v zájmovém území lze zaznamenat koncentrace nad 14,0 µg.m3. Naopak nejnižší koncentrace byly vypočteny v jihozápadní části posuzované locality, kde budou klesat pod hranici 13,0 µg.m3.

V uvedených hodnotách je, stejně jako v případě částic frakce PM\textsubscript{10}, zahrnuta i sekundární prašnost, včetně takzvané nedopravní složky (prach zvířený z povrchu větrem, prach z průmyslových ploch a podobně). Imisní limit pro průměrné roční koncentrace suspendovaných částic frakce PM\textsubscript{2.5} byl pro hodnocený výhledový stav uvažován ve výši 25 µg.m3. Jak ukazují výsledky modelových výpočtů, bude limit v celém zájmovém území splněn.
Suspendované částice frakce PM$_{2.5}$ - průměrné roční koncentrace - příspěvek záměru

Varianta 1

Nejvyšší nárůst průměrných ročních koncentrací suspendovaných částic velikostní frakce PM$_{2.5}$ v důsledku realizace záměru byl vypočten v nejbližším okolí západního objektu záměru, a to v úrovni do 0,053 µg.m$^{-3}$. Podél hlavních odjezdových a příjezdových tras v západním směru se příspěvky pohybují nad hranici 0,04 µg.m$^{-3}$, ve východním směru nad hranici 0,015 µg.m$^{-3}$. Podél ulice Mukařovského lze zaznamenat příspěvky záměru v rozmezí od 0,015 do 0,04 µg.m$^{-3}$. Podél Jeremiášovy ulice a ostatních příjezdových a odjezdových tras nepřekročí změny imisní zátěže hodnotu 0,01 µg.m$^{-3}$.

V žádné části zájmového území nebylo vlivem provozu záměru vypočteno překročení imisního limitu. Nejvyšší příspěvky lze očekávat na úrovni do 0,20 % limitních hodnot.

Varianta 2

Nejvyšší nárůst průměrných ročních koncentrací suspendovaných částic velikostní frakce PM$_{2.5}$ v důsledku realizace záměru byl vypočten v blízkosti západního objektu záměru, a to v úrovni do 0,049 µg.m$^{-3}$. Podél ulice Mukařovského lze zaznamenat příspěvky záměru v rozmezí od 0,015 do 0,03 µg.m$^{-3}$. Podél Jeremiášovy ulice a ostatních příjezdových a odjezdových tras nepřekročí změny imisní zátěže hodnotu 0,01 µg.m$^{-3}$.

V žádné části zájmového území nebylo vlivem provozu záměru vypočteno překročení imisního limitu. Nejvyšší příspěvky lze očekávat na úrovni do 0,20 % limitních hodnot.

Benzo(a)pyren – průměrné roční koncentrace

Pro koncentrace benzo(a)pyrenu nebyly z dostupných podkladů k dispozici údaje o imisním pozadí. V modelových výpočtech imisních koncentrací byly proto hodnoceny pouze imisní příspěvky benzo(a)pyrenu z liniových zdrojů v hodnoceném území.

Benzo(a)pyren – průměrné roční koncentrace - výhledový stav bez záměru - příspěvek automobilové dopravy

Přímo v místě hodnoceného záměru byly v roce 2018 vypočteny pro stav bez realizace záměru hodnoty příspěvků průměrných ročních koncentrací benzo(a)pyrenu v úrovni okolo 0,050 ng.m$^{-3}$. Nejvyšší příspěvky z dopravy byly vypočteny v okolí Jeremiášovy ulice, kde budou dosahovat až 0,13 ng.m$^{-3}$, a to v úseku s větším podélbným sklonem. Příspěvky se vzdáleností od komunikací klesají, nejnižší hodnoty koncentrací benzo(a)pyrenu byly vypočteny při jižní hranici zájmového území, a to pod hranici 0,02 ng.m$^{-3}$.

Imisní limit pro průměrné roční koncentrace benzo(a)pyrenu byl pro hodnocený výhledový stav uvažován ve výši 1 ng.m$^{-3}$, vypočtené hodnoty však nelze s limitem přímo porovnávat.
Benzo(a)pyren – průměrné roční koncentrace - výhledový stav se zářem - příspěvek automobilové dopravy

Varianta 1

Nejvyšší nárůst průměrných ročních koncentrací benzo(a)pyrenu v souvislosti s realizací záměru byl vypočten v blízkosti navrhovaných garáží západního objektu, kde se bude vliv provozu záměru pohybovat v úrovni do 0,003 ng.m\(^{-3}\). V blízkosti hlavních příjezdových a odjezdových tras lze zaznamenat nárůst imisní zátěže mírně nad 0,001 ng.m\(^{-3}\). S rostoucí vzdáleností od navrhovaných objektů záměru se budou příspěvky postupně snižovat. Podél ostatních vzdálenějších příjezdových a odjezdových tras nepřekročí příspěvky hodnotu 0,001 ng.m\(^{-3}\).

Nejvyšší příspěvky hodnoceného záměru byly vypočteny na úrovni 0,3 % imisního limitu. Vzhledem k tomu, že koncentrace benzo(a)pyrenu jsou ve vnějším ovzduší ovlivňovány zejména vytápěním a imisní příspěvek záměru se pohybují v řádu desetin platného imisního limitu, nemůže provoz zdrojů hodnoceného záměru ovlivnit plnění či neplnění imisního limitu v zájmovém území. Vliv záměru na imisní situaci benzo(a)pyrenu bude nevýznamný a v celkové imisní situaci se téměř neprojeví.

Varianta 2

Nejvyšší nárůst průměrných ročních koncentrací benzo(a)pyrenu v souvislosti s realizací záměru byl vypočten podél západní větve ulice Archeologická, kde se bude vliv provozu záměru pohybovat v úrovni do 0,004 ng.m\(^{-3}\). V blízkosti hlavních příjezdových a odjezdových tras lze zaznamenat nárůst imisní zátěže mírně nad 0,001 ng.m\(^{-3}\). S rostoucí vzdáleností od navrhovaných objektů záměru se budou příspěvky postupně snižovat. Podél ostatních vzdálenějších příjezdových a odjezdových tras nepřekročí příspěvky hodnotu 0,001 ng.m\(^{-3}\).

Nejvyšší příspěvky hodnoceného záměru byly vypočteny na úrovni 0,4 % imisního limitu. Vzhledem k tomu, že koncentrace benzo(a)pyrenu jsou ve vnějším ovzduší ovlivňovány zejména vytápěním a imisní příspěvek záměru se pohybují v řádu desetin platného imisního limitu, nemůže provoz zdrojů hodnoceného záměru ovlivnit plnění či neplnění imisního limitu v zájmovém území. Vliv záměru na imisní situaci benzo(a)pyrenu bude nevýznamný a v celkové imisní situaci se téměř neprojeví.

D.1.2.3.7. Vlivy na ovzduší - shrnutí

Z hlediska celkové úrovni imisní zátěže lze na základě výsledků imisního monitoringu charakterizovat hodnocenou lokalitu jako mírně až středně zatíženou. Z hlediska pětiletých průměrných koncentrací za roky 2009 – 2013 lze odvodit, že imisní limity všech sledovaných látek s výjimkou benzo(a)pyrenu jsou v současnosti v území splněny. Na základě výsledků modelových výpočtů lze dále označit jako rizikové z hlediska překročení limitních hodnot krátkodobé koncentrace prachových částic frakce PM\(_{10}\).
Vlivem zprovoznění záměru dojde v jeho okolí pouze k mírnému navýšení imisní zátěže. V případě průměrných ročních koncentrací oxidu dusičitého je ve variantě 1 záměru očekáván nárůst nejvýše o 0,11 µg.m⁻³ (to znamená o 0,30 % imisního limitu), ve variantě 2 je pak očekáván nárůst nejvýše o 0,07 µg.m⁻³ (tj. 0,18 % imisního limitu).

U benzenu byl ve variantě 1 záměru vypočten nárůst průměrných ročních koncentrací nejvýše 0,037 µg.m⁻³ (0,75 % limity) a ve variantě 2 činí vypočtený nárůst průměrných ročních koncentrací benzenu 0,024 µg.m⁻³ (0,48 % imisního limitu).

V případě suspendovaných částic frakce PM₁₀ byl ve variantě 1 záměru vypočten nárůst průměrných ročních koncentrací suspendovaných částic frakce PM₁₀ do 0,42 µg.m⁻³ (0,21 % limitu) a ve variantě 2 je možné očekávat náhradní zásobování elektrickou energií navrhovaných objektů budoucí tvěra.

U žádné sledované imisní charakteristiky nebylo vlivem uvedení záměru do provozu uvedeno překročení imisního limitu. Vlivy záměru na kvalitu ovzduší je vzhledem k rozsahu možno hodnotit v obou variantách jako nevýznamné.

V rámci hodnocení plánovaného záměru byl rovněž uvažován provoz náhradních zdrojů elektrické energie poháněných spalovacími dieselovými motory. Předpokládá se, že potřeby náhradního zásobování elektrickou energii navrhovaných objektů budou kryty dvěma dieselagregáty. Při provozu těchto zdrojů znečišťování ovzduší dojde k produkci emisí po časově omezenou dobu. Příspěvky při provozu náhradních zdrojů elektrické energie byly vyčleněny na úrovně:

- maximální hodinové koncentrace NO₂
 - ve variantě 1 záměru do 4,9 µg.m⁻³
 - ve variantě 2 záměru do 2,5 µg.m⁻³
- maximální denní koncentrace suspendovaných částic frakce PM₁₀
 - ve variantě 1 záměru do 0,001 µg.m⁻³

Prosinec 2014
Číslo úkolu: 2014-S-06
Vzhledem k relativně nízkým emisním faktorům uvažovaných náhradních zdrojů elektrické energie a vzhledem k umístění jejich výtížek, které budou vyvedeny nad střechy navrhovaných objektů, nebude mít jejich provoz ve variantě 1 ani ve variantě 2 záměru významný vliv na imisní situaci v zájmovém území a neovlivní plnění příslušných hodnot imisních limitů.

V rozptylových studiích, které jsou v plném rozsahu uvedeny v příloze dokumentace číslo 4, byly také hodnoceny vlivy stavebních prací na změny hodnot imisního zatížení u okolní obytné zástavby. Ve výpočtech byla uvažována situace, kdy budou současně použity všechny stroje nasazené v průběhu realizace 2. (nejméně příznivé) etapy výstavby (zemní práce) za podmínek suchého dne.

Pro takové předpoklady byl u okolní obytné zástavby vypočten ve variantě 1 záměru nejvyšší nárůst denních koncentrací suspendovaných částic frakce PM10 do úrovně 11,2 µg.m⁻³ a u maximálních hodinových koncentrací NO₂ ve výši maximálně 102,4 µg.m⁻³. Ve variantě 2 záměru byl vypočten nárůst denních koncentrací PM10 do úrovně 11,5 µg.m⁻³ a nárůst maximálních hodinových koncentrací NO₂ do 116,9 µg.m⁻³. Jedná se přitom o hodnoty, které se mohou v zájmovém území záměru vyskytnout v případě současné příznivé meteorologické situace.

Celkově je možné konstatovat, že navrhovaný záměr nebude mít významný vliv na plnění imisních limitů v hodnocené lokalitě. Vliv záměru na kvalitu ovzduší je vzhledem k rozsahu možné hodnotit jako nevýznamný, který nebude mít určující vliv na imisní zatížení.

D.1.2.5. Vlivy na klima

S ohledem na konfiguraci terénu, na výšky a tvary stávajících objektů v zájmovém území a v jeho okolí a na výšky a tvary připravovaného záměru „Polyfunkční domy – Centrum Lužiny“ se nepředpokládá ovlivnění klimatických charakteristik oproti stávajícímu stavu.

D.1.3. Vlivy na hlukovou situaci a eventuální další fyzikální a biologické charakteristiky

D.1.3.1. Vlivy na hlukovou situaci

Předmětem této kapitoly je posouzení a vyhodnocení vlivu hluku z provádění stavby a z běžného provozu záměru „Polyfunkční domy – Centrum Lužiny“ z hlediska akustické (hlukové) situace v chráněném venkovním prostoru nejbližší obytné zástavby a v chráněném venkovním prostoru připravované zástavby záměru.

V případě realizace záměru může dojít ke změně hlukové situace v prostoru okolní obytné či jinak chráněné zástavby jak v důsledku provozu technologických zařízení jednotlivých objektů a odrazných i stínících účinků navrhovaných budov, tak v důsledku zvýšení dopravních intenzit na okolních komunikacích souvisejících s dopravní obsluhou vyvolanou provozem záměru.

Zájmovým územím pro posouzení vlivů realizace záměru na akustickou (hlukovou) situaci ve venkovním prostoru je chápáno území, v němž lze v důsledku uskutečnění záměru pravděpodobně očekávat změnu akustické situace ve vztahu k obytné či jinak chráněné zástavbě. Do zájmového území samozřejmě spadá i území samotného záměru, neboť od hodnot ekvivalentních hladin akustického tlaku A na fasádách připravovaných objektů se budou odvíjet požadavky na akustické parametry jejich obvodových pláštů.

Akustická situace ve venkovním prostoru (zjištěná na základě měření, výpočtu, či na základě přípustných hodnot na pracovištích) se ve vztahu k hygienickým požadavkům posuzuje podle § 12 Nařízení vlády číslo 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací, ve znění pozdějších předpisů. Na základě uvedeného nařízení vlády jsou stanovovány limity nejvyšší přípustných hodnot (hygienické limity) hluku a vibrací na pracovištích, v chráněných venkovních prostorech, chráněných vnitřních prostorech staveb a způsob měření a hodnocení těchto hodnot.

Hodnoty hluku ve venkovním prostoru se vyjadřují ekvivalentní hladinou \(L_{Aeq,T} \) akustického tlaku A. V denní době se stanoví pro osm souvislých a na sebe navazujících nejhlučnějších hodin, v noční době pro nejhlučnější hodinu. Pro hluk z dopravy na veřejných komunikacích a dráhách (s výjimkou účelových komunikací) a pro hluk z leteckého provozu se ekvivalentní hladina \(L_{Aeq,T} \) akustického tlaku A stanoví pro celou denní (\(L_{Aeq,16} \)) a noční dobu (\(L_{Aeq,8} \)).

Nejvyšší přípustná hodnota ekvivalentní hladiny akustického tlaku A (s výjimkou hluku z leteckého provozu a vysokoenergetického impulsního hluku) se stanoví součtem základní hladiny hluku A (\(L_{Aeq,T} = 50 \) dB) a příslušné korekce pro denní nebo noční dobu a pro místo, která přílišně podporuje důležitou oblast chráněného prostoru. Korekce pro stanovení nejvyšších přípustných hodnot hluku v chráněném venkovním prostoru a v chráněných venkovních prostorech staveb jsou uvedeny v příloze číslo 3 k Nařízení vlády číslo 272/2011 Sb. V příloze číslo 3 k Nařízení vlády číslo 272/2011 Sb. jsou uvedeny rovněž korekce pro stanovení nejvyšších přípustných hodnot hluku (hygienických limitů hluku) v chráněném venkovním prostoru staveb pro hluk ze stavební činnosti. Pro vysoce impulzní hluk se připočte další korekce -12 dB. Obsahuje-li hluk výrazné tónové složky nebo má-li výrazný informační charakter, jako například elektroakusticky zesilovaná řeč, přičítá se další korekce -5 dB.

D.I.3.2. Programové vybavení pro výpočty hluku

Modelové výpočty v rámci akustické (hlukové) studie byly realizovány pomocí počítačového programu CadnaA. Software CadnaA je nejrozšířenějším výpočtovým programem v EU.

Program CadnaA vyžaduje při vytváření výpočtového prostředí zadání následujících údajů: vrstevnice s danou výškou, parametry komunikací (podélný sklon), korekce na vícenásobný odraz, intenzity dopravy (denní, noční, rozložení dopravy), výpočtové rychlosti, budovy (výška a odrazivost / pohltivost fasády); stacionární zdroje hluku (akustický výkon, popřípadě ekvivalentní hladina akustického tlaku A).

Přesnost výpočtu

Vypočtené hodnoty ekvivalentní hladiny akustického tlaku A jsou uváděny pro výpočtové modely s přesností výsledků výpočtu ± 2 dB. V souvislosti s přesností (nejistotou) výpočtu je třeba uvést, že jde o interval hodnot ekvivalentních hladin akustického tlaku A, ve kterém se pohybují skutečné hodnoty. Přitom je nutno mít vždy na paměti, že skutečná hodnota může být jak vyšší tak nižší než hodnota vypočtená. Nelze tedy uvažovat pouze kladnou nebo zápornou odchylku od vypočtené hodnoty.

Výpočtový model pro hodnocení záměru byl ověřen na základě hodnot ekvivalentních hladin akustického tlaku A zjištěných měřením v zájmovém území, které jsou stručně uvedeny v kapitole dokumentace „C.2.5.2. Měření akustické situace a ověření výpočtového modelu“ a také v hlukové studii. Měření akustické situace je popsáno v protokolu z měření, který je uveden v příloze dokumentace číslo 5. Rozdíl mezi výpočtem modelu a měřením je v toleranci do ± 2,0 dB. Uvedené hodnoty zajišťují dostatečnou přesnost výpočtů.

D.I.3.3. Hlukové limity

Hlukové limity pro období výstavby

Limity nejvýše přípustných hodnot hluku ve venkovním prostředí (hygienické limity) jsou stanoveny na základě nařízení vlády číslo 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací. Z dikce uvedeného nařízení vyplývají pro chráněné objekty zájmové území, v jejíchž blízkosti bude probíhat realizace záměru, následující nejvýše přípustné hodnoty hladiny akustického tlaku A ze stavební činnosti:

- denní provoz v době od 6:00 do 7:00 hod \(\text{L}_{\text{Aeq}} = 60 \text{ dB} \)
- denní provoz v době od 7.00 do 21.00 hod \(\text{L}_{\text{Aeq}} = 65 \text{ dB} \)
- denní provoz v době od 21:00 do 22:00 hod \(\text{L}_{\text{Aeq}} = 60 \text{ dB} \)
- noční provoz v době od 22:00 do 6:00 hod \(\text{L}_{\text{Aeq}} = 45 \text{ dB} \).
Pro hladiny akustického tlaku A z obslužné dopravy staveniště platí v době od 7:00 do 21:00 hod nejvyšší přípustná hodnota $L_{Aeq} = 65$ dB.

Hlukové limity pro období provozu

Stejně jako v případě hluku z provádění stavební činnosti, jsou nejvýše přípustné hodnoty hluku ve venkovním prostoru (hygienické limity) pro období provozu záměru stanoveny na základě nařízení vlády číslo 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací, ve znění pozdějších předpisů. Pro stávající i nové objekty v zájmovém území pro realizaci záměru jsou, pro účely hodnocení akustické situace ve venkovním prostoru staveb v období po zprovoznění záměru, uvažovány následující nejvýše přípustné hodnoty hluku:

- **Hygienický limit v chráněném venkovním prostoru ostatních staveb pro hluk z dopravy v případě staré hlukové zátěže:**
 - pro den $L_{Aeq,16h} = 70$ dB,
 - pro noc $L_{Aeq,8h} = 60$ dB.
- **Hygienický limit v chráněném venkovním prostoru ostatních staveb pro hluk z dopravy na dálnicích, silnicích I. a II. třídy a místních komunikacích I. a II. třídy:**
 - pro den $L_{Aeq,16h} = 60$ dB,
 - pro noc $L_{Aeq,8h} = 50$ dB.
- **Hygienický limit v chráněném venkovním prostoru ostatních staveb pro hluk z dopravy na místních komunikacích III. třídy:**
 - pro den $L_{Aeq,16h} = 55$ dB,
 - pro noc $L_{Aeq,8h} = 45$ dB.
- **Hygienický limit v chráněném venkovním prostoru ostatních staveb pro hluk z dopravy na účelových komunikacích:**
 - pro den $L_{Aeq,8h} = 50$ dB (pro nejhlučnějších na sebe navazujících 8 hodin),
 - pro noc $L_{Aeq,1h} = 40$ dB (pro nejhlučnější hodinu).
- **Hygienický limit v chráněném venkovním prostoru ostatních staveb pro hluk ze stacionárních zdrojů hluku:**
 - pro den $L_{Aeq,8h} = 50$ dB (pro nejhlučnějších na sebe navazujících 8 hodin),
 - pro noc $L_{Aeq,1h} = 40$ dB (pro nejhlučnější hodinu).

D.I.3.4. Referenční výpočtové body

Referenční výpočtový bod představuje virtuální místo, kde se pomocí výpočetní metody zjišťují akustické (hlukové) parametry, charakterizující akustickou situaci v posuzovaném místě. Jedním z parametrů charakterizujících hluchnost v životním prostředí, je ekvivalentní hladina akustického tlaku L_{Aeq}, která představuje energetický průměr okamžitých hladin akustického tlaku A a vyjadřuje se v decibelech (dB).

Referenční výpočtové body pro období výstavby

Pro výpočet hluku ze stavebních prací a ze stavební dopravy bylo pro obě varianty záměru vybráno 29 výpočtových bodů. Situace s umístěním výpočtových bodů pro výstavbu záměru “Polyfunkční domy – Centrum Lužiny“ je patrná z následujícího obrázku. Charakteristika výpočtových bodů je uvedena v následující tabulce.
Referenční výpočtové body pro období provozu

Hodnoty hluku v zájmovém území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ byly stanoveny v rámci hlukové studie modelovým výpočtem celkem ve 29 referenčních výpočtových (kontrolních) bodech u okolní zástavby a v 13 referenčních výpočtových bodech ve venkovním prostoru připravovaných budov (v 13 výpočtových referenčních bodech ve variantě 2 záměru).

Referenční výpočtové body číslo M1 až M3 a body V1 až V23 charakterizují akustickou situaci v chráněném venkovním prostoru stávající zástavby v zájmovém území pro výstavbu záměru. Referenční výpočtové body číslo V24 až V26 reflektují akustickou situaci v okolí objektů občanské vybavenosti situovaných v bezprostřední blízkosti záměru. Referenční výpočtové body číslo V27 až V39 (referenční body V27 až V37 ve variantě 2 záměru) popisují akustickou situaci v chráněném venkovním prostoru připravovaných budov, které budou postaveny v rámci záměru.

Referenční výpočtové body byly umístěny v zájmovém území tak, aby co nejlépe charakterizovaly akustickou situaci v chráněných venkovních prostorech zájmového území. Ekvivalentní hladiny akustického tlaku A (hluku) v chráněných venkovních prostorech staveb zájmového území byly vypočteny ve výpočtových bodech umístěných ve vzdálenosti 2 m před přivrácenými fasádami nejbližších objektů.
Umístění uvažovaných výpočtových bodů je uvedeno v následující tabulce. Graficky je situace výpočtových bodů zřejmá z obrázku D18 pod tabulkou.

Tabulka D3 Charakteristika výpočtových bodů

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem v metrech</th>
<th>Umístění výpočtového bodu</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>13,5</td>
<td>bytový dům ul. Böhmova č.p. 1976</td>
</tr>
<tr>
<td>M2</td>
<td>2,5</td>
<td>bytový dům ul. Archeologická č.p. 1881</td>
</tr>
<tr>
<td>M3</td>
<td>9,7</td>
<td>bytový dům ul. Jeremiášova č.p. 2722</td>
</tr>
<tr>
<td>V01</td>
<td>4,5; 16,5; 28,5; 37,5</td>
<td>bytový dům ul. Brdičkova č.p. 1911</td>
</tr>
<tr>
<td>V02</td>
<td>4,5; 16,5; 28,5; 37,5</td>
<td>bytový dům ul. Brdičkova č.p. 1914</td>
</tr>
<tr>
<td>V03</td>
<td>4,5; 19,5; 34,5</td>
<td>bytový dům ul. Piškova č.p. 1956</td>
</tr>
<tr>
<td>V04</td>
<td>4,5; 34,5</td>
<td>bytový dům ul. Piškova č.p. 1953</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>budova základní školy ul. Brdičkova č.p. 1878</td>
</tr>
<tr>
<td>V06</td>
<td>4,5; 16,5; 28,5; 37,5</td>
<td>bytový dům ul. Brdičkova č.p. 1907</td>
</tr>
<tr>
<td>V07</td>
<td>4,5; 37,5</td>
<td>bytový dům ul. Archeologická č.p. 1884</td>
</tr>
<tr>
<td>V08</td>
<td>10,5; 19,5; 31,5</td>
<td>bytový dům ul. Amforová č.p. 1889</td>
</tr>
<tr>
<td>V09</td>
<td>7,5; 22,5</td>
<td>bytový dům ul. Amforová č.p. 1897</td>
</tr>
<tr>
<td>V10</td>
<td>4,5; 16,5</td>
<td>bytový dům ul. Amforová č.p. 1935</td>
</tr>
<tr>
<td>V11</td>
<td>4,5; 19,5</td>
<td>bytový dům ul. Amforová č.p. 1929</td>
</tr>
<tr>
<td>V12</td>
<td>4,5</td>
<td>rodinný dům ul. Smíchovská č.p. 1988</td>
</tr>
<tr>
<td>V13</td>
<td>1,5</td>
<td>rodinný dům ul. Smíchovská č.p. 1989</td>
</tr>
<tr>
<td>V14</td>
<td>6,5</td>
<td>budova základní školy ul. Brdičkova č.p. 1878</td>
</tr>
<tr>
<td>V15</td>
<td>29,0; 47,0</td>
<td>bytový dům ul. Piškova č.p. 1944</td>
</tr>
<tr>
<td>V16</td>
<td>1,5</td>
<td>rodinný dům ul. Ke Klubovně č.p. 1638</td>
</tr>
<tr>
<td>V17</td>
<td>7,5; 37,5</td>
<td>bytový dům ul. Zvoncovitá č.p. 1974</td>
</tr>
<tr>
<td>V18</td>
<td>13,5; 34,5</td>
<td>bytový dům ul. Zvoncovitá č.p. 1967</td>
</tr>
<tr>
<td>V19</td>
<td>7,5; 37,5</td>
<td>bytový dům ul. Zvoncovitá č.p. 1971</td>
</tr>
<tr>
<td>V20</td>
<td>4,5; 19,5; 34,5</td>
<td>bytový dům ul. Zvoncovitá č.p. 1967</td>
</tr>
<tr>
<td>V21</td>
<td>4,5; 19,5; 34,5</td>
<td>bytový dům ul. Piškova č.p. 1959</td>
</tr>
<tr>
<td>V22</td>
<td>4,5; 19,5; 37,5</td>
<td>bytový dům ul. Zázvorková č.p. 2007</td>
</tr>
<tr>
<td>V23</td>
<td>4,5; 19,5; 37,5</td>
<td>bytový dům ul. Bronzová č.p. 2010</td>
</tr>
<tr>
<td>V24</td>
<td>10,5</td>
<td>objekt občanské vybavenosti ul. Archeologická č.p. 2256</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>objekt občanské vybavenosti ul. Archeologická č.p. 2256</td>
</tr>
<tr>
<td>V26</td>
<td>10,5</td>
<td>objekt občanské vybavenosti ul. Archeologická č.p. 2256</td>
</tr>
<tr>
<td>V27</td>
<td>13,5; 25,5; 40,5</td>
<td>Nové objekty</td>
</tr>
<tr>
<td>V28</td>
<td>13,5; 28,5; 43,5</td>
<td>„Polyfunkční domy – Centrum Lužiny“</td>
</tr>
<tr>
<td>V29</td>
<td>13,5; 28,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V30</td>
<td>16,5; 28,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V31</td>
<td>13,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V32</td>
<td>19,5; 31,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V33</td>
<td>19,5; 31,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V34</td>
<td>16,5; 28,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V35</td>
<td>16,5; 28,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V36</td>
<td>16,5</td>
<td></td>
</tr>
<tr>
<td>V37</td>
<td>16,5; 34,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V38</td>
<td>19,5; 31,5; 43,5</td>
<td></td>
</tr>
<tr>
<td>V39</td>
<td>19,5</td>
<td></td>
</tr>
</tbody>
</table>
Obrázek D3 Umístění výpočtových bodů v zájmovém území (varianta 1 záměru)

Obrázek D4 Umístění výpočtových bodů v zájmovém území (varianta 2 záměru)
D.I.3.5. Hluk v období stavby

Posouzení hluku ze stavby se zabývá vlivem stavební činnosti a vlivem dopravní obsluhy staveniště na akustickou situaci u přílehlé chráněné zástavby. Vliv stavební činnosti a dopravní obsluhy staveniště byl zjišťován na základě údajů o postupu stavebních prací, získaných od projektanta - zpracovatele zásad organizace výstavby (ZOV). Vzhledem k neznalosti přesného nasazení strojů a jejich celkové délky provozu při stavebních pracích byl výpočet prováděn vždy pro nejméně příznivý případ a výsledky výpočtů jsou tedy vždy na straně bezpečnosti.

Hluk šířící se ze staveniště bude proměnlivý a bude záviset na druhu, množství a místě provádění prací, druhu a stavu používaných stavebních strojů, počtu pracovníků v jedné pracovní směně, organizaci práce i na opatřeních k omezení hluku přijatých vedením stavby. Všechny tyto parametry nezůstávají v průběhu stavby konstantní, ale mohou se někdy i zásadním způsobem měnit v závislosti na okamžitém stadiu výstavby.

Z výše uvedeného vyplývá, že predikce hluku šířícího se z budoucího staveniště do okolí je velmi komplikovaná a je zatížena vysokou nejistotou, protože výstavba bude probíhat po etapách a dílčích fázích a emitovaná hluchnost se bude v čase i místě významně měnit. Uvažované etapy výstavby jsou specifikovány v kapitole dokumentace B.III.5.1.1. Hluk v období výstavby.

Výpočty hluku ze stavebních činností byly pro obě varianty záměru provedeny pro nejhlčnější etapy výstavby, případně dílčí fáze výstavby, a pro jejich souběhy dle harmonogramu stavebních prací. V ostatních etapách stavby se předpokládá, že hluková zátěž bude nižší a nevyvolá u nejblíže chráněné zástavby překračování hygienického limitu hluku pro hluk ze stavební činnosti. V modelových výpočtech je uvažováno se současným provozem strojů tak, jak je uvedeno v kapitole B.III.5.1.1. Hluk v období výstavby.

Protože v době zpracování dokumentace byla příprava záměru „Polyfunkční domy – Centrum Lužiny“ ve stádiu zpracování dokumentace pro územní řízení, je nutno považovat hlukové studie pro období výstavby za předběžné, zejména pokud se týká časových údobí nasazení jednotlivých mechanizmů. Účelem hodnocení hluku ze stavební činnosti bylo především zjistit možné ovlivnění okolní chráněné zástavby a případně navrhnout vhodná protihluková opatření.

Výsledky výpočtů hluku ze stavební činnosti

Výsledky hlukové studie prezentují možné stavy, které mohou, ale nutně nemusejí nastat v průběhu stavebních činností. Výpočty byly provedeny bez znalosti dodavatele stavebních prací, a proto byly pro výpočty použity obvyklé hodnoty zdrojových hluchnosti běžně používaných zařízení.

Na základě zásad organizace výstavby a harmonogramu stavebních prací byly pro obě varianty záměru určeny nejméně příznivé součinnosti stavebních činností z hlediska hluku ze stavební činnosti a pro jednotlivé souběhy stavebních činností pak byly modelovány akustické situace.
Hluk ze staveništní dopravy

V rámci hlukových studií, které jsou v plném rozsahu uvedeny v příloze dokumentace číslo 5, byl nejprve proveden výpočet hluku ze staveništní dopravy. Z vypočtených hodnot uvedených v hlukových studiích je pro obě varianty záměru patrné, že hluk ze samotné obslužné dopravy stavby nepřekročí hodnotu \(L_{A_{eq,s}} = 50,2 \text{ dB} \) a je tedy nižší než hygienický limit pro hluk ze stavební činnosti (\(L_{A_{eq,s}} = 65 \text{ dB} \)). Hodnoty \(L_{A_{eq,T}} \) vypočtené pouze pro hluk z obslužné staveništní dopravy splňují i hygienický limit pro silnice a místní komunikace III. třídy.

Hluk ze stacionárních a liniových zdrojů hluku na staveništi

Hluk ze stavební činnosti byl z akustického hlediska posouzen pro obě varianty záměru ve dvou modelech souběhu jednotlivých fází. Hodnocen byl jednak souběh druhé a třetí fáze výstavby záměru, která zahrnuje zakládání západního objektu a výstavbu nosných konstrukcí východního objektu, a jednak souběh čtvrté a páté fáze výstavby zahrnující výstavbu nosných konstrukcí v západním objektu a ostatní stavební práce ve východním objektu.

V následujících tabulkách jsou nejprve pro variantu 1 záměru a následně pro variantu 2 záměru uvedeny pro zvolené výpočtové body před fasádami obytných objektů v nejbližším okolí záměru vypočtené ekvivalentní hladiny akustického tlaku \(L_{A_{eq,s}} \) ze stavební činnosti a z obslužné dopravy na staveništi pro uvažované souběhy stavebních činností. Vzhledem k tomu, že při výpočtech hluku ze stavební činnosti došlo v obou variantách záměru u některých kontrolních výpočtových bodů k překročení hygienického limitu pro hluk ze stavební činnosti, byla navržena akustická (protihluková) opatření. V následujících tabulkách jsou uvedeny jak hodnoty bez protihlukových opatření, tak hodnoty po realizaci protihlukových opatření.

Tabulka D4 Výsledky výpočtu hluku ze stavební činnosti – varianta 1 záměru - výpočet zahrnuje vliv staveništní dopravy a stavebních strojů

<table>
<thead>
<tr>
<th>Výpočtový bod</th>
<th>Výška bodu nad terénem (m)</th>
<th>Souběh 2. a 3. fáze stavby (zakládání + HSV)</th>
<th>Souběh 4. a 5. fáze stavby (HSV + PSV)</th>
<th>Hygienický limit hluku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bez opatření</td>
<td>S opatřením</td>
<td>Bez opatření</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(L_{A_{eq,s}}) (dB)</td>
<td>(L_{A_{eq,s}}) (dB)</td>
<td>(L_{A_{eq,s}}) (dB)</td>
</tr>
<tr>
<td>M1</td>
<td>13,5</td>
<td>43,9</td>
<td>42,1</td>
<td>46,4</td>
</tr>
<tr>
<td>M2</td>
<td>2,5</td>
<td>46,3</td>
<td>42,9</td>
<td>43,8</td>
</tr>
<tr>
<td>M3</td>
<td>9,7</td>
<td>30,7</td>
<td>29,2</td>
<td>29,4</td>
</tr>
<tr>
<td>V01</td>
<td>4,5</td>
<td>67,1</td>
<td>61,6</td>
<td>63,4</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>67,6</td>
<td>63,2</td>
<td>63,1</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>67,2</td>
<td>63,3</td>
<td>62,3</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>66,9</td>
<td>63,2</td>
<td>61,7</td>
</tr>
<tr>
<td>V02</td>
<td>4,5</td>
<td>69,3</td>
<td>62,5</td>
<td>64,1</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>69,1</td>
<td>64,7</td>
<td>63,3</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>68,0</td>
<td>63,6</td>
<td>61,9</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>67,1</td>
<td>62,2</td>
<td>61,3</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>64,6</td>
<td>60,3</td>
<td>67,1</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>64,5</td>
<td>63,7</td>
<td>66,8</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>64,0</td>
<td>63,0</td>
<td>66,0</td>
</tr>
</tbody>
</table>
Tabulka D5 Výsledky výpočtu hluku ze stavební činností – varianta 2 záměru - výpočet zahrnuje vliv staveništní dopravy a stavebních strojů

<table>
<thead>
<tr>
<th>Výpočtový bod</th>
<th>Výška bodu nad terénem (m)</th>
<th>Souběh 2. a 3. fáze stavby (zakládání + HSV)</th>
<th>Souběh 4. a 5. fáze stavby (HSV + PSV)</th>
<th>Hygienický limit hluku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bez opatření</td>
<td>S opatřením</td>
<td>Bez opatření</td>
</tr>
<tr>
<td>V04</td>
<td>4,5</td>
<td>65,5</td>
<td>63,5</td>
<td>67,6</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>62,9</td>
<td>61,7</td>
<td>66,4</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>53,2</td>
<td>50,5</td>
<td>51,5</td>
</tr>
<tr>
<td>V06</td>
<td>4,5</td>
<td>40,3</td>
<td>36,5</td>
<td>39,2</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>45,9</td>
<td>45,8</td>
<td>45,1</td>
</tr>
<tr>
<td>V07</td>
<td>10,5</td>
<td>31,8</td>
<td>29,2</td>
<td>28,8</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>31,7</td>
<td>29,2</td>
<td>28,6</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>32,8</td>
<td>30,6</td>
<td>29,9</td>
</tr>
<tr>
<td>V08</td>
<td>7,5</td>
<td>32,9</td>
<td>29,6</td>
<td>28,7</td>
</tr>
<tr>
<td></td>
<td>22,5</td>
<td>32,5</td>
<td>29,1</td>
<td>27,9</td>
</tr>
<tr>
<td>V09</td>
<td>4,5</td>
<td>31,4</td>
<td>28,1</td>
<td>27,7</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>30,3</td>
<td>27,0</td>
<td>26,6</td>
</tr>
<tr>
<td>V10</td>
<td>4,5</td>
<td>32,5</td>
<td>29,6</td>
<td>29,8</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>32,2</td>
<td>29,1</td>
<td>29,0</td>
</tr>
<tr>
<td>V11</td>
<td>4,5</td>
<td>25,0</td>
<td>18,7</td>
<td>18,4</td>
</tr>
<tr>
<td>V12</td>
<td>1,5</td>
<td>26,8</td>
<td>20,4</td>
<td>20,2</td>
</tr>
<tr>
<td>V13</td>
<td>6,5</td>
<td>45,1</td>
<td>43,1</td>
<td>45,4</td>
</tr>
<tr>
<td>V14</td>
<td>29,0</td>
<td>28,5</td>
<td>27,0</td>
<td>27,3</td>
</tr>
<tr>
<td></td>
<td>47,0</td>
<td>28,8</td>
<td>27,8</td>
<td>27,6</td>
</tr>
<tr>
<td>V15</td>
<td>1,5</td>
<td>30,8</td>
<td>28,9</td>
<td>29,0</td>
</tr>
<tr>
<td>V16</td>
<td>7,5</td>
<td>30,3</td>
<td>28,9</td>
<td>29,1</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>29,3</td>
<td>28,2</td>
<td>28,2</td>
</tr>
<tr>
<td>V17</td>
<td>13,5</td>
<td>34,5</td>
<td>33,5</td>
<td>35,3</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>35,5</td>
<td>34,6</td>
<td>36,4</td>
</tr>
<tr>
<td>V18</td>
<td>4,5</td>
<td>53,6</td>
<td>52,6</td>
<td>55,5</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>57,7</td>
<td>56,4</td>
<td>59,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>57,7</td>
<td>56,9</td>
<td>59,7</td>
</tr>
<tr>
<td>V19</td>
<td>4,5</td>
<td>57,2</td>
<td>56,0</td>
<td>54,0</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>61,9</td>
<td>59,4</td>
<td>58,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>61,9</td>
<td>60,0</td>
<td>58,4</td>
</tr>
<tr>
<td>V20</td>
<td>10,5</td>
<td>66,8</td>
<td>68,6</td>
<td>60,7</td>
</tr>
<tr>
<td>V21</td>
<td>10,5</td>
<td>53,7</td>
<td>50,1</td>
<td>49,2</td>
</tr>
<tr>
<td>V22</td>
<td>10,5</td>
<td>50,7</td>
<td>48,8</td>
<td>51,8</td>
</tr>
</tbody>
</table>

Poznámka:

„Tučně“ vyznačené vypočtené ekvivalentní hladiny akustického tlaku A překračují hygienický limit pro hluk ze stavební činnosti 65 dB.

*Jedná se objekty občanské vybavenosti – Obchodní centrum Lužiny, které nemají chráněný venkovní prostor.
Dokumentace záměru

Polyfunkční domy – Centrum Lužiny

Číslo úkolu: 2014-S-06

Prosinec 2014

Výpočtový bod

<table>
<thead>
<tr>
<th>Výška bodu nad terénem (m)</th>
<th>Souběh 2. a 3. fáze stavby (zakládání + HSV)</th>
<th>Souběh 4. a 5. fáze stavby (HSV + PSV)</th>
<th>Hygienický limit hluku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bez opatření</td>
<td>S opatřením</td>
<td>Bez opatření</td>
</tr>
<tr>
<td></td>
<td>L<sub>eqA</sub> (dB)</td>
<td>L<sub>eqA</sub> (dB)</td>
<td>L<sub>eqA</sub> (dB)</td>
</tr>
<tr>
<td>V01</td>
<td>4,5</td>
<td>68,3</td>
<td>61,6</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>68,6</td>
<td>63,2</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>68,2</td>
<td>63,3</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>68,0</td>
<td>63,2</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>69,6</td>
<td>62,5</td>
</tr>
<tr>
<td>V02</td>
<td>16,5</td>
<td>69,4</td>
<td>64,7</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>68,4</td>
<td>63,6</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>67,5</td>
<td>62,2</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>63,9</td>
<td>60,3</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>63,8</td>
<td>63,7</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>63,5</td>
<td>63,0</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>64,7</td>
<td>63,5</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>63,6</td>
<td>61,7</td>
</tr>
<tr>
<td>V04</td>
<td>10,5</td>
<td>53,9</td>
<td>50,5</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>59,0</td>
<td>36,5</td>
</tr>
<tr>
<td>V05</td>
<td>37,5</td>
<td>60,9</td>
<td>45,8</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
<td>33,0</td>
<td>29,2</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>33,0</td>
<td>29,2</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>34,2</td>
<td>30,6</td>
</tr>
<tr>
<td>V06</td>
<td>7,5</td>
<td>33,9</td>
<td>29,6</td>
</tr>
<tr>
<td></td>
<td>22,5</td>
<td>33,4</td>
<td>29,1</td>
</tr>
<tr>
<td>V07</td>
<td>4,5</td>
<td>32,7</td>
<td>28,1</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>31,6</td>
<td>27,0</td>
</tr>
<tr>
<td>V08</td>
<td>4,5</td>
<td>33,4</td>
<td>29,6</td>
</tr>
<tr>
<td>V09</td>
<td>19,5</td>
<td>32,9</td>
<td>29,1</td>
</tr>
<tr>
<td>V10</td>
<td>4,5</td>
<td>25,0</td>
<td>18,7</td>
</tr>
<tr>
<td>V11</td>
<td>1,5</td>
<td>26,8</td>
<td>20,4</td>
</tr>
<tr>
<td>V12</td>
<td>6,5</td>
<td>45,3</td>
<td>43,1</td>
</tr>
<tr>
<td>V13</td>
<td>29,0</td>
<td>29,0</td>
<td>27,0</td>
</tr>
<tr>
<td>V14</td>
<td>47,0</td>
<td>30,0</td>
<td>27,8</td>
</tr>
<tr>
<td>V15</td>
<td>1,5</td>
<td>31,3</td>
<td>28,9</td>
</tr>
<tr>
<td>V16</td>
<td>7,5</td>
<td>31,0</td>
<td>28,9</td>
</tr>
<tr>
<td>V17</td>
<td>37,5</td>
<td>30,0</td>
<td>28,2</td>
</tr>
<tr>
<td>V18</td>
<td>13,5</td>
<td>34,8</td>
<td>33,5</td>
</tr>
<tr>
<td>V19</td>
<td>34,5</td>
<td>35,8</td>
<td>34,6</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>49,1</td>
<td>52,6</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>52,7</td>
<td>56,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>53,6</td>
<td>56,9</td>
</tr>
<tr>
<td>V20</td>
<td>4,5</td>
<td>56,2</td>
<td>56,0</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>60,0</td>
<td>59,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>61,0</td>
<td>60,0</td>
</tr>
<tr>
<td>V21</td>
<td>10,5</td>
<td>67,2</td>
<td>68,6</td>
</tr>
<tr>
<td>V22</td>
<td>10,5</td>
<td>54,0</td>
<td>50,1</td>
</tr>
</tbody>
</table>

Poznámka:

Tučně vyznačené vypočtené ekvivalentní hladiny akustického tlaku A překračují hygienický limit pro hluk ze stavební činnosti 65 dB.

Jedná se objekty občanské vybavenosti – Obchodní centrum Lužiny, které nemají chráněný venkovní prostor.
Z výše uvedených tabulek je pro obě varianty záměru zřejmé, že bez realizace protihlukových opatření by se mohly hodnoty ekvivalentních hladin akustického tlaku $L_{Aeq,S}$ z výstavby záměru pohybovat v některých výpočtových bodech nad hodnotou hygienického limitu. Po realizaci protihlukových opatření se budou hodnoty ekvivalentních hladin akustického tlaku $L_{Aeq,S}$ z výstavby záměru pohybovat při všech součinnostech stavebních činností pod hygienickým limitem hluku $L_{Aeq}= 65$ dB pro stavební činnost v době od 7:00 do 21:00 hodin. Vyšší hodnota než $L_{Aeq}= 65$ dB byla vypočtena pouze ve výpočtovém bodě V20, který není umístěn v chráněním venkovním prostoru staveb.

Výsledky hlukové studie pro období stavby je nutno považovat za předběžné. Prezentují jeden z možných stavů, který může v průběhu stavební činnosti nastat. Výpočty byly provedeny bez znalosti dodavatele stavebních prací, a proto v nich byly použity obvyklé hodnoty zdrojových hlúčností běžně používané zařízení. Posouzení hluku z výstavby bude nutno v rámci projektu pro stavební povolení zpřesnit na základě podrobnějších informací. Grafická znázornění rozložení pásem ekvivalentních hladin akustického tlaku L_A jsou pro uvažované souběhy stavebních činností při výstavbě záměru prezentována v hlukových studiích, které jsou v plném rozsahu uvedeny v příloze číslo 5 dokumentace.

Protihluková opatření

Vzhledem k tomu, že při výpočtech hluku ze stavební činnosti došlo u některých kontrolních výpočtových bodů k překročení hygienického limitu pro hluk ze stavební činnosti, byla pro obě varianty záměru navrhována níže uvedená akustická opatření.

Je navrženo oplocení stavby ve výšce minimálně 2,0 m. Dále je pro první souběh prací:

- Navrženo zřízení clony o výšce 2,0 m kolem kotoučové pily umístěná směrem k chráněným stavbám a samotné umístění kotoučové pily je předpokládáno v největší vzdálenosti od chráněných objektů, respektive je doporučeno umístění kotoučové pily v uzavřeném objektu.
- Doba použití úhlových brusek je omezena na 3 hodiny za den
- Doba použití domíchávačů betonu je omezena z 6 hodin na 5 hodin.
- Řetězová pila je navržena elektrická o $L_{WA} = 105$ dB, která má nižší akustické parametry.
- Místo původně uvažovaných 2 ks vrtných souprav může být v provozu pouze 1 vrtná souprava. Doba použití vrtné soupravy je zkrácena z původních 6 hodin na 5 hodin a předpokládá se použití tišší vrtné soupravy o akustických parametrech ve vzdálenosti 10 metrů $L_{pA,10m} = 74$ dB.
- Je navrženo omezení doby použití sbíjecích kladiv z původních 4 hodin na 3 hodiny.
- Je navržena clona o výšce 2,0 m kolem kotoučové pily a umístění kotoučové pily je předpokládáno co nejdále od chráněných objektů, respektive je doporučeno umístění kotoučové pily v uzavřeném objektu. Doba použití pily je navržena 4 hodiny.
- Doba použití úhlových brusek se zkracuje z původních 4 hodin na 3 hodiny.

Ve druhém souběhu prací:

- Je navrženo omezení doby použití sbíjecích kladiv z původních 4 hodin na 3 hodiny.
- Je navržena protihluková clona o výšce minimálně 2,0 metry kolem kotoučové pily a umístění kotoučové pily je předpokládáno co nejdále od chráněných objektů, respektive je doporučeno umístění kotoučové pily v uzavřeném objektu. Doba použití pily je navržena 4 hodiny.
Dále se počítá se zkrácením doby použití úhlových brusek z původních 4 hodin na 3 hodiny.

Pro stavební činnost se dále doporučují následující obecná protihluková opatření:
- Stavební práce by měly být realizovány pouze v denní době od 7:00 do 21:00 hodin, z toho hlučné práce pouze v době od 8:00 do 18:00 hodin.
- V noční době nesmí probíhat venkovní stavební práce. Po postavení objektu mohou v noční době probíhat tiché vnitřní práce za předpokladu zavřených oken a dveří v objektu.
- V noční době nesmí být v provozu obslužná doprava staveniště.
- Řidiči nákladních aut po příjezdu na stavbu a po dobu čekání na stavbě musí vypnout motor.
- Stavební jeřáby a čerpadla betonové směsi by měly být umístěny k odstranění od chráněných objektů zájmového území.
- Obslužná doprava by měla být zajišťována dovoz stavebních materiálů do prostoru zařízení staveniště a odvoz stavebních súčástí výkupné zeminy bude vedena po schválených příjezdových/odjezdových trasách.
- Obyvatelé z nejbližší situovaných domů by měli být informováni o délce a charakteru jednotlivých etap výstavby. Vhodné by bylo stanovit kontaktní osobu odpovědnou za provádění stavby, na kterou by se občané mohli obrácet s případnými dotazy, žádostmi a stížnostmi.
- V dalším stupni zpracování projektové dokumentace stavby je třeba zpracovat akustické výpočty pro hluk ze stavební činnosti na základě upřesněných vstupních parametrů výpočtu (harmonogram stavby).

D.I.3.6. Hluk v období provozu

Na akustickou situaci v zájmovém území pro realizaci záměru a v jeho okolí budou mít v období běžného provozu záměru vliv předevedší automobilová doprava na komunikacích v jeho okolí a stacionární zdroje hluku umístěné na střechách a fasádách objektů zájmu (technologické zařízení).

Hluk z dopravy na komunikacích v zájmovém území pro realizaci záměru byl stanoven na základě intenzit dopravy na komunikacích zájmového území a intenzit dopravy vyvolané provozem záměru (viz kapitola B.II.4. Nároky na dopravní a jinou infrastrukturu). Hluk ze stacionárních zdrojů hluku byl stanoven pro zdroje, které jsou popsány v kapitole B.III.5.1.2. Hluk v období provozu.

Varianty modelových výpočtů v období provozu

Modelové výpočty ekvivalentních hladin akustického tlaku A (hluku) v zájmovém území pro realizaci záměru a v jeho okolí byly pro obě varianty záměru provedeny pro počáteční akustickou situaci (PAS) a pro výhledovou akustickou (hlukovou) situaci. Výhledové hlukové situace byly ve vztahu k provozu navrhovaného záměru posuzovány pro obě varianty záměru pro následující modelové stavy:
- Výhledová akustická situace pro stav bez záměru
- Výhledová akustická situace pro stav se záměrem
Vyhodnocení provozu samotného záměru (stacionárních zdrojů hluku a provozu dopravy na účelových komunikacích).

Počáteční akustická situace

Počáteční akustická situace v zájmovém území pro realizaci záměru je popsána v kapitole „C.2.5. Hluk - počáteční akustická situace“ a v hlukových studiích, které jsou uvedeny v příloze číslo 5 dokumentace.

Modelové výpočty hluku z dopravy na veřejných komunikacích

Ve výhledovém stavu bude mít hlavní vliv na akustickou situaci stejně jako v současnosti automobilová doprava na pozemních komunikacích řešeného území. Vypočtené hodnoty ekvivalentních hladin akustického tlaku A ze silniční dopravy pro denní a noční dobu jsou pro výhledový stav bez realizace záměru i pro stav po jeho realizaci prezentovány pro obě varianty záměru v následujících tabulkách. V tabulkách jsou rovněž uvedeny rozdíly v hladínách hluku mezi výhledovým stavem bez realizace záměru a stavem po realizaci záměru (příspěvky záměru).

Pro výhledový stav bez záměru bylo uvažováno se zachováním stávající silniční sítě a stávajících objektů v zájmovém území. Pro výhledový stav se záměrem bylo uvažováno s běžným provozem záměru. Pro výpočet byly uvažovány intenzity automobilové dopravy na komunikacích v řešeném území stanovené v dopravních studiích („Dopravněinženýrské podklady pro záměr Polyfunkční domy – Centrum Lužiny“), které zpracovala Technická správa komunikací hlavního města Prahy, Úsek dopravního inženýrství (TSK, 2013; TSK, 2014).

Protože očekávané intenzity automobilové dopravy vyvolané provozem varianty 1 záměru v roce 2018 by se mohly lišit od intenzit dopravy vyvolané provozem stejné varianty záměru v roce 2015 jen zcela nevýznamně a protože lze očekávat mírné zlepšování akustických (hlukových) parametrů automobilů v čase, je možno pro hodnocení vlivů (příspěvků) varianty 1 záměru k referenčnímu stavu (k počáteční akustické situaci) použít, také s ohledem na dosažitelnou přesnost matematického modelování hlukových situací, příspěvky z provozu automobilové dopravy záměru vypočtené pro rok 2015.

Výsledky modelových výpočtů – výhledový stav (veřejné komunikace III. třídy)

V následujících tabulkách jsou nejprve pro variantu 1 záměru a pak pro variantu 2 záměru uvedeny vypočtené ekvivalentní hladiny hluku (akustického tlaku A) pro jednotlivé výpočtové stavy, které charakterizují vliv provozu silniční dopravy na komunikacích III. třídy (Archeologická, Piškova, Brdičkova, Zázvorkova a Bronzová).
Tabulka D6 Vypočtené hodnoty $L_{Aeq,T}$ z provozu dopravy na komunikacích III. třídy - stav bez záměru a stav se záměrem – varianta 1 záměru

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Vypočtená hodnota $L_{Aeq,T}$ (dB)</th>
<th>Hygienický limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
</tr>
<tr>
<td>M1</td>
<td>13,5</td>
<td>52,7</td>
<td>43,1</td>
</tr>
<tr>
<td>M2</td>
<td>2,5</td>
<td>56,1</td>
<td>46,4</td>
</tr>
<tr>
<td>V01</td>
<td>4,5</td>
<td>53,1</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>51,7</td>
<td>41,9</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,1</td>
<td>40,3</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,2</td>
<td>39,4</td>
</tr>
<tr>
<td>V02</td>
<td>4,5</td>
<td>50,9</td>
<td>41,1</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>49,9</td>
<td>40,0</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>48,8</td>
<td>39,0</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>48,3</td>
<td>38,5</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>50,5</td>
<td>40,8</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>51,8</td>
<td>42,1</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>51,1</td>
<td>41,4</td>
</tr>
<tr>
<td>V04</td>
<td>4,5</td>
<td>52,4</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>50,1</td>
<td>40,4</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>44,6</td>
<td>34,9</td>
</tr>
<tr>
<td>V06</td>
<td>4,5</td>
<td>53,0</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>52,3</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,7</td>
<td>41,0</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,9</td>
<td>40,2</td>
</tr>
<tr>
<td>V07</td>
<td>4,5</td>
<td>55,9</td>
<td>46,3</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,6</td>
<td>43,0</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
<td>44,8</td>
<td>35,2</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>46,3</td>
<td>36,6</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>45,8</td>
<td>36,2</td>
</tr>
<tr>
<td>V15</td>
<td>29,0</td>
<td>47,4</td>
<td>37,8</td>
</tr>
<tr>
<td></td>
<td>47,0</td>
<td>45,2</td>
<td>35,5</td>
</tr>
<tr>
<td>V17</td>
<td>7,5</td>
<td>52,0</td>
<td>42,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,2</td>
<td>42,5</td>
</tr>
<tr>
<td>V18</td>
<td>13,5</td>
<td>57,3</td>
<td>47,6</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>55,2</td>
<td>45,6</td>
</tr>
<tr>
<td>V19</td>
<td>7,5</td>
<td>50,6</td>
<td>41,0</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,0</td>
<td>42,4</td>
</tr>
<tr>
<td>V20</td>
<td>4,5</td>
<td>51,9</td>
<td>42,3</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>53,9</td>
<td>44,3</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>53,4</td>
<td>43,8</td>
</tr>
<tr>
<td>V21</td>
<td>4,5</td>
<td>49,3</td>
<td>39,8</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>51,8</td>
<td>42,3</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>51,6</td>
<td>42,0</td>
</tr>
<tr>
<td>V22</td>
<td>4,5</td>
<td>50,1</td>
<td>40,5</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>53,7</td>
<td>44,1</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>53,4</td>
<td>43,8</td>
</tr>
<tr>
<td>V23</td>
<td>4,5</td>
<td>49,7</td>
<td>40,2</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>52,2</td>
<td>42,7</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>51,9</td>
<td>42,3</td>
</tr>
<tr>
<td>V24</td>
<td>10,5</td>
<td>52,7</td>
<td>43,0</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>46,2</td>
<td>36,4</td>
</tr>
<tr>
<td>V26</td>
<td>10,5</td>
<td>42,5</td>
<td>32,9</td>
</tr>
<tr>
<td>V27</td>
<td>13,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Výp. bod</td>
<td>Výška nad terénem (m)</td>
<td>Výhledový stav bez záměru</td>
<td>Výhledový stav se záměrem</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
</tr>
<tr>
<td>25,5</td>
<td>-</td>
<td>-</td>
<td>52,6</td>
</tr>
<tr>
<td>40,5</td>
<td>-</td>
<td>-</td>
<td>51,5</td>
</tr>
<tr>
<td>V28</td>
<td>13,5</td>
<td>-</td>
<td>54,3</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>-</td>
<td>53,0</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>51,9</td>
</tr>
<tr>
<td>V29</td>
<td>13,5</td>
<td>-</td>
<td>53,2</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>-</td>
<td>52,2</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>51,4</td>
</tr>
<tr>
<td>V30</td>
<td>16,5</td>
<td>-</td>
<td>51,1</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>-</td>
<td>50,9</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>50,1</td>
</tr>
<tr>
<td>V31</td>
<td>13,5</td>
<td>-</td>
<td>47,2</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>47,4</td>
</tr>
<tr>
<td>V32</td>
<td>19,5</td>
<td>-</td>
<td>39,8</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>-</td>
<td>42,9</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>43,7</td>
</tr>
<tr>
<td>V33</td>
<td>19,5</td>
<td>-</td>
<td>39,5</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>-</td>
<td>42,0</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>43,0</td>
</tr>
<tr>
<td>V34</td>
<td>16,5</td>
<td>-</td>
<td>52,0</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>-</td>
<td>51,6</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>46,2</td>
</tr>
<tr>
<td>V35</td>
<td>16,5</td>
<td>-</td>
<td>52,7</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>-</td>
<td>52,3</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>51,4</td>
</tr>
<tr>
<td>V36</td>
<td>16,5</td>
<td>-</td>
<td>52,1</td>
</tr>
<tr>
<td>16,5</td>
<td>-</td>
<td>-</td>
<td>50,2</td>
</tr>
<tr>
<td>V37</td>
<td>34,5</td>
<td>-</td>
<td>48,4</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>45,8</td>
</tr>
<tr>
<td>V38</td>
<td>19,5</td>
<td>-</td>
<td>38,9</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>-</td>
<td>41,0</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>-</td>
<td>42,7</td>
</tr>
<tr>
<td>V39</td>
<td>19,5</td>
<td>-</td>
<td>39,1</td>
</tr>
</tbody>
</table>

Poznámky:

* Stavební objekty, které nemají chráněný venkovní prostor staveb. U ZŠ znak označuje, že objekty jsou hodnoceny pouze po dobu užívání, tedy v denní době.

Tučně vyznačené vypočtené ekvivalentní hladiny akustického tlaku A překračují hygienický limit hluku pro hluč ochranících a místních komunikacích III. třídy.

Hygienický limit pro všechny stavby je uvažován pro komunikace III. třídy, tj. pro den \(L_{A_{16h}} = 55 \text{ dB} \) a pro noc \(L_{A_{8h}} = 45 \text{ dB} \) (silniční doprava).

 Hodnota \(<10,0\) vyjadřuje vypočtené hodnoty menší než \(10\) dB.

Ve výpočtových bodech V27 až V39 se jedná o výpočetové body na novém objektu – PD Centrum Lužiny.

Ve výpočtu není zahrnut vliv provozu na komunikaci Jeremiášova.
<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Výpočtená hodnota L_{Aeq,T} (dB)</th>
<th>Hygienický limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
</tr>
<tr>
<td>M1</td>
<td>13,5</td>
<td>52,9</td>
<td>53,0</td>
</tr>
<tr>
<td>M2</td>
<td>2,5</td>
<td>56,2</td>
<td>46,6</td>
</tr>
<tr>
<td>V01</td>
<td>4,5</td>
<td>53,1</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>51,7</td>
<td>41,9</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,2</td>
<td>40,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,3</td>
<td>39,5</td>
</tr>
<tr>
<td>V02</td>
<td>4,5</td>
<td>50,9</td>
<td>41,1</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>49,9</td>
<td>40,1</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>48,8</td>
<td>39,0</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>48,3</td>
<td>38,5</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>50,6</td>
<td>40,8</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>51,9</td>
<td>42,2</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>51,2</td>
<td>41,5</td>
</tr>
<tr>
<td>V04</td>
<td>4,5</td>
<td>52,5</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>50,2</td>
<td>40,4</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>44,7</td>
<td>34,9</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>53,0</td>
<td>43,2</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>52,3</td>
<td>42,6</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>50,8</td>
<td>41,0</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>49,9</td>
<td>40,2</td>
</tr>
<tr>
<td>V07</td>
<td>4,5</td>
<td>56,1</td>
<td>46,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,7</td>
<td>43,1</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
<td>44,9</td>
<td>35,2</td>
</tr>
<tr>
<td>V08</td>
<td>19,5</td>
<td>46,3</td>
<td>36,7</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>45,9</td>
<td>36,3</td>
</tr>
<tr>
<td>V15</td>
<td>29,0</td>
<td>47,6</td>
<td>38,0</td>
</tr>
<tr>
<td></td>
<td>47,0</td>
<td>45,3</td>
<td>35,7</td>
</tr>
<tr>
<td>V17</td>
<td>7,5</td>
<td>52,1</td>
<td>42,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,3</td>
<td>42,7</td>
</tr>
<tr>
<td>V18</td>
<td>13,5</td>
<td>57,4</td>
<td>47,8</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>55,4</td>
<td>45,8</td>
</tr>
<tr>
<td>V19</td>
<td>7,5</td>
<td>50,7</td>
<td>41,1</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,1</td>
<td>42,5</td>
</tr>
<tr>
<td>V20</td>
<td>4,5</td>
<td>52,0</td>
<td>42,5</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>54,0</td>
<td>44,5</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>53,5</td>
<td>43,9</td>
</tr>
<tr>
<td>V21</td>
<td>4,5</td>
<td>49,5</td>
<td>39,9</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>51,9</td>
<td>42,4</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>51,7</td>
<td>42,2</td>
</tr>
<tr>
<td>V22</td>
<td>4,5</td>
<td>50,2</td>
<td>40,7</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>53,9</td>
<td>44,3</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>53,5</td>
<td>43,9</td>
</tr>
<tr>
<td>V23</td>
<td>4,5</td>
<td>49,9</td>
<td>40,4</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>52,4</td>
<td>42,8</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>52,0</td>
<td>42,4</td>
</tr>
<tr>
<td>V24</td>
<td>10,5</td>
<td>52,7</td>
<td>43,0</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>46,2</td>
<td>36,4</td>
</tr>
<tr>
<td>V26</td>
<td>10,5</td>
<td>42,7</td>
<td>33,0</td>
</tr>
<tr>
<td>V27</td>
<td>6, NP</td>
<td>49,3</td>
<td>40,2</td>
</tr>
<tr>
<td>Výp. bod</td>
<td>Výška nad terénem (m)</td>
<td>Vypočtená hodnota $L_{Aeq,T}$ (dB)</td>
<td>Hygienický limit (dB)</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Výhledový stav bez záměru</td>
<td>Výhledový stav se záměrem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Den</td>
<td>Noc</td>
</tr>
<tr>
<td>12. NP</td>
<td></td>
<td>51,8</td>
<td>42,9</td>
</tr>
<tr>
<td>19. NP</td>
<td></td>
<td>51,3</td>
<td>42,3</td>
</tr>
<tr>
<td>26. NP</td>
<td></td>
<td>49,6</td>
<td>40,3</td>
</tr>
<tr>
<td>6. NP</td>
<td></td>
<td>47,0</td>
<td>37,6</td>
</tr>
<tr>
<td>12. NP</td>
<td></td>
<td>47,5</td>
<td>38,0</td>
</tr>
<tr>
<td>19. NP</td>
<td></td>
<td>47,4</td>
<td>37,9</td>
</tr>
<tr>
<td>26. NP</td>
<td></td>
<td>46,5</td>
<td>36,9</td>
</tr>
<tr>
<td>7. NP</td>
<td></td>
<td>42,3</td>
<td>32,8</td>
</tr>
<tr>
<td>11. NP</td>
<td></td>
<td>45,5</td>
<td>35,9</td>
</tr>
<tr>
<td>19. NP</td>
<td></td>
<td>46,1</td>
<td>36,6</td>
</tr>
<tr>
<td>26. NP</td>
<td></td>
<td>45,9</td>
<td>36,4</td>
</tr>
<tr>
<td>6. NP</td>
<td></td>
<td>52,1</td>
<td>42,5</td>
</tr>
<tr>
<td>11. NP</td>
<td></td>
<td>51,9</td>
<td>42,3</td>
</tr>
<tr>
<td>16. NP</td>
<td></td>
<td>50,9</td>
<td>41,5</td>
</tr>
<tr>
<td>6. NP</td>
<td></td>
<td>53,2</td>
<td>43,6</td>
</tr>
<tr>
<td>11. NP</td>
<td></td>
<td>52,7</td>
<td>43,1</td>
</tr>
<tr>
<td>16. NP</td>
<td></td>
<td>51,7</td>
<td>42,1</td>
</tr>
<tr>
<td>6. NP</td>
<td></td>
<td>52,4</td>
<td>42,8</td>
</tr>
<tr>
<td>12. NP</td>
<td></td>
<td>50,4</td>
<td>40,7</td>
</tr>
<tr>
<td>16. NP</td>
<td></td>
<td>49,2</td>
<td>39,5</td>
</tr>
<tr>
<td>7. NP</td>
<td></td>
<td>46,9</td>
<td>37,2</td>
</tr>
<tr>
<td>11. NP</td>
<td></td>
<td>40,5</td>
<td>31,0</td>
</tr>
<tr>
<td>16. NP</td>
<td></td>
<td>42,8</td>
<td>33,3</td>
</tr>
<tr>
<td>7. NP</td>
<td></td>
<td>44,4</td>
<td>35,0</td>
</tr>
<tr>
<td>40,3</td>
<td>30,9</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Poznámky:

* Stavební objekty, které nemají chráněný venkovní prostor staveb. U ZŠ znak označuje, že objekty jsou hodnoceny pouze po dobu užívání, tedy v denní době.

Tučně vyznačené vypočtené ekvivalentní hladiny akustického tlaku A překračují hygienický limit hluku pro hluk z dopravy na silnicích a místních komunikacích III. třídy.

Hygienický limit pro všechny stavy je uvažován pro komunikace III. třídy, tj. pro den $L_{Aeq,16h} = 55\,\text{dB}$ a pro noc $L_{Aeq,8h} = 45\,\text{dB}$ (silniční doprava).

Hodnota $< 10,0$ vyjadřuje vypočtené hodnoty menší než $10\,\text{dB}$.

Ve výpočtových bodech V27 až V39 se jedná o výpočtové body na novém objektu – PD Centrum Lužiny.

Ve výpočtu není zahrnut vliv provozu na komunikaci Jeremiášova.
Vyhodnocení – výhledový stav (veřejné komunikace III. třídy)

Výhledový stav bez záměru

Varianta 1

Vypočtené hodnoty pro budoucí stav bez záměru se pohybují v denní době v intervalu $L_{Aeq,16h} = 42,5 \ až 57,3 \ dB$. V noční době se vypočtené hodnoty pohybují v intervalu $L_{Aeq,8h} = 32,9 \ až 47,6 \ dB$. Ve všech kontrolních výpočtových bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Ve výpočtových bodech M2, V07, V18 je překročen hygienický limit pro komunikace III. třídy 55/45 dB (den/noc). Z porovnání vypočtených hodnot pro výhledový stav bez záměru s počáteční akustickou situací je patrné, že ve výpočtových bodech dochází k mírnému zvýšení vypočtených hodnot $L_{Aeq,T}$. Zvýšení je způsobeno nárůstem ostatní dopravy nesouvisející se záměrem.

Varianta 2

Vypočtené hodnoty v denní době se pohybují v intervalu $L_{Aeq,16h} = 42,7 \ až 57,4 \ dB$. V noční době se vypočtené hodnoty pohybují v intervalu $L_{Aeq,8h} = 33,0 \ až 47,8 \ dB$. Ve všech kontrolních výpočtových bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Ve výpočtových bodech M2, V07, V18 je překročen hygienický limit pro komunikace III. třídy 55/45 dB (den/noc). Z porovnání vypočtených hodnot pro výhledový stav bez záměru s počáteční akustickou situací je patrné, že ve výpočtových bodech dochází k mírnému zvýšení vypočtených hodnot $L_{Aeq,T}$. Zvýšení je způsobeno nárůstom ostatní dopravy.

Výhledový stav se záměrem

Varianta 1

Vypočtené hodnoty pro budoucí stav se záměrem se pohybují v denní době v intervalu $L_{Aeq,16h} = 38,9 \ až 57,4 \ dB$. V noční době se vypočtené hodnoty pohybují v intervalu $L_{Aeq,8h} = 29,2 \ až 47,8 \ dB$. Ve všech kontrolních výpočtových bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Ve výpočtových bodech M2, V07, V18 je překročen hygienický limit pro komunikace III. třídy 55/45 dB (den/noc).

Varianta 2

Vypočtené hodnoty pro denní dobu se pohybují v intervalu $L_{Aeq,16h} = 40,3 \ až 57,5 \ dB$. V noční době se pohybují vypočtené hodnoty v intervalu $L_{Aeq,8h} = 30,9 \ až 47,9 \ dB$. Ve všech kontrolních výpočtových bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Ve výpočtových bodech M2, V07 a V18 je překročen hygienický limit pro komunikace III. třídy 55/45 dB (den/noc).

Ve výpočtových bodech, ve kterých dochází k překročení hygienického limitu jak ve stavu bez záměru tak ve stavu se záměrem, se změna vlivem záměru pohybuje v denní i noční době nejvýše do 0,4 dB (ve variantě 2 nejvýše 0,3 dB).

Grafické znázornění rozložení pásem ekvivalentních hladin akustického tlaku A (hlukové mapy) je uvedeno v přílohové části hlukové studie, která je v plném rozsahu uvedena v příloze číslo 5 dokumentace.

Výsledky modelových výpočtů – výhledový stav (veřejné komunikace I. a II. třídy)

V následujících tabulkách jsou nejprve pro variantu 1 záměru a poté pro variantu 2 záměru uvedeny vypočtené ekvivalentní hladiny hluku (akustického tlaku A) ve zvolených kontrolních bodech pro jednotlivé výpočtové stavy, které charakterizují vliv provozu silniční dopravy na komunikacích I. a II. třídy, to znamená na komunikacích Jeremiášova a Mukařovského.

Tabulka D8 Vypočtené hodnoty $L_{Aeq,T}$ z provozu dopravy na komunikacích I. a II. třídy - stav bez záměru a stav se záměrem – varianta 1 záměru

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Vypočtená hodnota $L_{Aeq,T}$ (dB)</th>
<th>Hygienický limit pro komunikace I. třídy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Výhledový stav bez záměru</td>
<td>Výhledový stav se záměrem</td>
</tr>
<tr>
<td>M3</td>
<td>9.7</td>
<td>65.0</td>
<td>59.0</td>
</tr>
<tr>
<td>V07</td>
<td>4.5</td>
<td>42.7</td>
<td>36.0</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>45.6</td>
<td>39.0</td>
</tr>
<tr>
<td>V08</td>
<td>10.5</td>
<td>54.0</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>55.2</td>
<td>48.5</td>
</tr>
<tr>
<td></td>
<td>31.5</td>
<td>55.3</td>
<td>48.6</td>
</tr>
<tr>
<td>V09</td>
<td>4.5</td>
<td>54.4</td>
<td>47.8</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>56.4</td>
<td>49.7</td>
</tr>
<tr>
<td>V10</td>
<td>4.5</td>
<td>53.8</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>56.5</td>
<td>49.6</td>
</tr>
<tr>
<td>V11</td>
<td>4.5</td>
<td>53.3</td>
<td>47.3</td>
</tr>
<tr>
<td></td>
<td>19.5</td>
<td>56.6</td>
<td>50.7</td>
</tr>
<tr>
<td>V12</td>
<td>4.5</td>
<td>57.9</td>
<td>52.0</td>
</tr>
<tr>
<td>V13</td>
<td>1.5</td>
<td>59.4</td>
<td>53.6</td>
</tr>
<tr>
<td>V14</td>
<td>6.5</td>
<td>55.1</td>
<td>49.2</td>
</tr>
<tr>
<td>V15</td>
<td>29.0</td>
<td>65.0</td>
<td>59.0</td>
</tr>
<tr>
<td>V16</td>
<td>47.0</td>
<td>63.3</td>
<td>57.3</td>
</tr>
<tr>
<td>V17</td>
<td>1.5</td>
<td>61.5</td>
<td>55.5</td>
</tr>
<tr>
<td>V18</td>
<td>7.5</td>
<td>52.8</td>
<td>46.9</td>
</tr>
<tr>
<td></td>
<td>37.5</td>
<td>56.4</td>
<td>50.5</td>
</tr>
<tr>
<td>V19</td>
<td>13.5</td>
<td>49.5</td>
<td>43.6</td>
</tr>
<tr>
<td></td>
<td>34.5</td>
<td>52.1</td>
<td>46.2</td>
</tr>
<tr>
<td>V20</td>
<td>10.5</td>
<td>43.7</td>
<td>37.8</td>
</tr>
<tr>
<td>V21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V22</td>
<td>13.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V23</td>
<td>28.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V24</td>
<td>43.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V25</td>
<td>13.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Prosinec 2014
Číslo úkolu: 2014-S-06

Výpočtená hodnota $L_{Aeq,T}$ (dB)

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Výhledový stav bez záměru</th>
<th>Výhledový stav se záměrem</th>
<th>Změna vlivem záměru</th>
<th>Hygienický limit pro komunikace I. třídy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
<td>Noc</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>36,4</td>
<td>30,2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>39,5</td>
<td>33,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16,5</td>
<td>-</td>
<td>38,6</td>
<td>32,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>40,7</td>
<td>34,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>43,4</td>
<td>37,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13,5</td>
<td>-</td>
<td>44,1</td>
<td>38,3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>48,7</td>
<td>42,8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19,5</td>
<td>-</td>
<td>40,6</td>
<td>34,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>42,3</td>
<td>36,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>44,4</td>
<td>38,5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19,5</td>
<td>-</td>
<td>43,6</td>
<td>37,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>45,5</td>
<td>39,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>47,5</td>
<td>41,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16,5</td>
<td>-</td>
<td>35,7</td>
<td>29,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>38,2</td>
<td>32,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>44,5</td>
<td>38,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19,5</td>
<td>-</td>
<td>39,9</td>
<td>34,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>45,5</td>
<td>39,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>47,5</td>
<td>41,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>38,2</td>
<td>32,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>44,5</td>
<td>38,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19,5</td>
<td>-</td>
<td>39,9</td>
<td>34,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>45,5</td>
<td>39,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>47,5</td>
<td>41,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16,5</td>
<td>-</td>
<td>35,7</td>
<td>29,9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>28,5</td>
<td>-</td>
<td>38,2</td>
<td>32,4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>44,5</td>
<td>38,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19,5</td>
<td>-</td>
<td>39,9</td>
<td>34,1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31,5</td>
<td>-</td>
<td>45,5</td>
<td>39,7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43,5</td>
<td>-</td>
<td>47,5</td>
<td>41,6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Poznámky:

* Stavební objekty, které nemají chráněný venkovní prostor staveb. U ZŠ znak označuje, že objekty jsou hodnoceny pouze po dobu užívání, tedy v denní době.

Hygienický limit pro všechny stavy je uvažován s korekcí na starou hlukovou zátěž, tj. pro den $L_{Aeq,16h}= 70\ dB$ a pro noc $L_{Aeq,8h}= 60\ dB$ (silniční doprava).

Ve výpočtových bodech V27 až V39 nebyl proveden výpočet hluku pro Stav 1 (počáteční akustická situace) a Stav 2 bez záměru, protože se jedná o výpočtové body na novém objektu – PD Centrum Lužiny.

Tabulka D9

Vypočtené hodnoty $L_{Aeq,T}$ z provozu dopravy na komunikacích I. a II. třídy - stav bez záměru a stav se záměrem – varianta 2 záměru

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Výhledový stav bez záměru</th>
<th>Výhledový stav se záměrem</th>
<th>Změna vlivem záměru</th>
<th>Hygienický limit pro komunikace I. třídy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
<td>Noc</td>
</tr>
<tr>
<td>M3</td>
<td>9,7</td>
<td>65,1</td>
<td>59,1</td>
<td>65,1</td>
<td>59,1</td>
</tr>
<tr>
<td>V07</td>
<td>4,5</td>
<td>42,7</td>
<td>36,0</td>
<td>42,8</td>
<td>36,0</td>
</tr>
<tr>
<td>V08</td>
<td>10,5</td>
<td>54,1</td>
<td>47,3</td>
<td>54,1</td>
<td>47,4</td>
</tr>
<tr>
<td>V09</td>
<td>19,5</td>
<td>55,3</td>
<td>48,5</td>
<td>55,3</td>
<td>48,5</td>
</tr>
<tr>
<td>V10</td>
<td>4,5</td>
<td>54,1</td>
<td>47,3</td>
<td>54,1</td>
<td>47,4</td>
</tr>
<tr>
<td>V11</td>
<td>4,5</td>
<td>53,5</td>
<td>47,5</td>
<td>53,5</td>
<td>47,5</td>
</tr>
<tr>
<td>Výp. bod</td>
<td>Výška nad terénem (m)</td>
<td>Výpočtená hodnota L_{Aeq,T} (dB)</td>
<td>Hygienický limit pro komunikace I. třídy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V12</td>
<td>19,5</td>
<td>56,8</td>
<td>50,8</td>
<td>56,8</td>
<td>50,9</td>
</tr>
<tr>
<td>V13</td>
<td>4,5</td>
<td>58,1</td>
<td>52,1</td>
<td>58,1</td>
<td>52,2</td>
</tr>
<tr>
<td>V14</td>
<td>6,5</td>
<td>59,6</td>
<td>53,7</td>
<td>59,6</td>
<td>53,7</td>
</tr>
<tr>
<td>V15</td>
<td>29,0</td>
<td>63,3</td>
<td>57,3</td>
<td>63,3</td>
<td>57,4</td>
</tr>
<tr>
<td>V16</td>
<td>1,5</td>
<td>61,6</td>
<td>55,6</td>
<td>61,6</td>
<td>55,6</td>
</tr>
<tr>
<td>V17</td>
<td>7,5</td>
<td>52,9</td>
<td>47,0</td>
<td>52,9</td>
<td>47,0</td>
</tr>
<tr>
<td>V18</td>
<td>37,5</td>
<td>56,5</td>
<td>50,6</td>
<td>56,6</td>
<td>50,7</td>
</tr>
<tr>
<td>V19</td>
<td>13,5</td>
<td>49,7</td>
<td>43,7</td>
<td>49,7</td>
<td>43,8</td>
</tr>
<tr>
<td>V20</td>
<td>34,5</td>
<td>52,2</td>
<td>46,3</td>
<td>52,2</td>
<td>46,3</td>
</tr>
<tr>
<td>V21</td>
<td>10,5</td>
<td>44,2</td>
<td>38,4</td>
<td>44,2</td>
<td>38,4</td>
</tr>
<tr>
<td>V22</td>
<td>6. NP</td>
<td>33,8</td>
<td>27,1</td>
<td>33,8</td>
<td>27,1</td>
</tr>
<tr>
<td>V23</td>
<td>12. NP</td>
<td>34,9</td>
<td>28,2</td>
<td>34,9</td>
<td>28,2</td>
</tr>
<tr>
<td>V24</td>
<td>19. NP</td>
<td>35,8</td>
<td>29,1</td>
<td>35,8</td>
<td>29,1</td>
</tr>
<tr>
<td>V25</td>
<td>26. NP</td>
<td>37,3</td>
<td>30,8</td>
<td>37,3</td>
<td>30,8</td>
</tr>
<tr>
<td>V26</td>
<td>6. NP</td>
<td>42,0</td>
<td>36,1</td>
<td>42,0</td>
<td>36,1</td>
</tr>
<tr>
<td>V27</td>
<td>12. NP</td>
<td>44,6</td>
<td>38,7</td>
<td>44,6</td>
<td>38,7</td>
</tr>
<tr>
<td>V28</td>
<td>19. NP</td>
<td>47,8</td>
<td>41,9</td>
<td>47,8</td>
<td>41,9</td>
</tr>
<tr>
<td>V29</td>
<td>26. NP</td>
<td>50,0</td>
<td>44,1</td>
<td>50,0</td>
<td>44,1</td>
</tr>
<tr>
<td>V30</td>
<td>6. NP</td>
<td>36,1</td>
<td>29,9</td>
<td>36,1</td>
<td>29,9</td>
</tr>
<tr>
<td>V31</td>
<td>12. NP</td>
<td>37,7</td>
<td>31,5</td>
<td>37,7</td>
<td>31,5</td>
</tr>
<tr>
<td>V32</td>
<td>19. NP</td>
<td>39,3</td>
<td>33,1</td>
<td>39,3</td>
<td>33,1</td>
</tr>
<tr>
<td>V33</td>
<td>26. NP</td>
<td>43,3</td>
<td>37,2</td>
<td>43,3</td>
<td>37,2</td>
</tr>
<tr>
<td>V34</td>
<td>7. NP</td>
<td>41,0</td>
<td>35,1</td>
<td>41,0</td>
<td>35,1</td>
</tr>
<tr>
<td>V35</td>
<td>11. NP</td>
<td>42,9</td>
<td>37,0</td>
<td>42,9</td>
<td>37,0</td>
</tr>
<tr>
<td>V36</td>
<td>19. NP</td>
<td>44,6</td>
<td>38,8</td>
<td>44,6</td>
<td>38,8</td>
</tr>
<tr>
<td>V37</td>
<td>26. NP</td>
<td>48,5</td>
<td>42,6</td>
<td>48,5</td>
<td>42,6</td>
</tr>
<tr>
<td>V38</td>
<td>6. NP</td>
<td>29,4</td>
<td>22,9</td>
<td>29,4</td>
<td>22,9</td>
</tr>
<tr>
<td>V39</td>
<td>11. NP</td>
<td>31,1</td>
<td>24,8</td>
<td>31,1</td>
<td>24,8</td>
</tr>
<tr>
<td>V40</td>
<td>16. NP</td>
<td>35,1</td>
<td>28,9</td>
<td>35,1</td>
<td>28,9</td>
</tr>
<tr>
<td>V41</td>
<td>6. NP</td>
<td>36,0</td>
<td>30,1</td>
<td>36,0</td>
<td>30,1</td>
</tr>
<tr>
<td>V42</td>
<td>11. NP</td>
<td>38,6</td>
<td>32,7</td>
<td>38,6</td>
<td>32,7</td>
</tr>
<tr>
<td>V43</td>
<td>16. NP</td>
<td>44,1</td>
<td>38,2</td>
<td>44,1</td>
<td>38,2</td>
</tr>
<tr>
<td>V44</td>
<td>6. NP</td>
<td>40,7</td>
<td>34,9</td>
<td>40,7</td>
<td>34,9</td>
</tr>
<tr>
<td>V45</td>
<td>12. NP</td>
<td>43,2</td>
<td>37,4</td>
<td>43,2</td>
<td>37,4</td>
</tr>
<tr>
<td>V46</td>
<td>16. NP</td>
<td>45,9</td>
<td>40,1</td>
<td>45,9</td>
<td>40,1</td>
</tr>
<tr>
<td>V47</td>
<td>11. NP</td>
<td>47,2</td>
<td>41,3</td>
<td>47,2</td>
<td>41,3</td>
</tr>
<tr>
<td>V48</td>
<td>16. NP</td>
<td>45,3</td>
<td>39,5</td>
<td>45,3</td>
<td>39,5</td>
</tr>
<tr>
<td>V49</td>
<td>7. NP</td>
<td>39,8</td>
<td>34,0</td>
<td>39,8</td>
<td>34,0</td>
</tr>
</tbody>
</table>

Poznámky:
* Stavební objekty, které nemají chráněný venkovní prostor staveb. U ZŠ znak označuje, že objekty jsou hodnoceny pouze po dobu užívání, tedy v denní době.

Hygienický limit pro všechny stavy je uvažován s korekcí na starou hlukovou zátěž, tj. pro den L_{Aeq,16h} = 70 dB a pro noc L_{Aeq,8h} = 60 dB (silniční doprava).

Ve výpočetových bodech V27 až V36 nebyl proveden výpočet hluku pro Stav 1 (počáteční akustická situace) a Stav 2 bez záměru, protože se jedná o výpočtové body na novém objektu – PD Centrum Lužiny.
Vyhodnocení – výhledový stav (veřejné komunikace I. a II. třídy)

Výhledový stav bez záměru

Varianta 1

Vypočetně hodnoty pro budoucí stav bez záměru se pohybují v denní době v intervalu $L_{A_{eq},16h} = 42,7$ až 65,0 dB. V noční době se vypočetně hodnoty pohybují v intervalu $L_{A_{eq},8h} = 36,0$ až 59,0 dB. Ve všech kontrolních výpočtovéch bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Z porovnání vypočetných hodnot pro výhledový stav bez záměru s počáteční akustickou situací je patrné, že ve výpočtovéch bodech dochází k mírnému zvýšení vypočetných hodnot $L_{A_{eq},T}$. Zvýšení je způsobeno nárůstem ostatní dopravy.

Varianta 2

Vypočetně hodnoty pro denní dobu se pohybují v intervalu $L_{A_{eq},16h} = 42,7$ až 65,1 dB. V noční době se vypočetně hodnoty pohybují v intervalu $L_{A_{eq},8h} = 36,0$ až 59,1 dB. Ve všech kontrolních výpočtovéch bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž. Z porovnání vypočetných hodnot pro výhledový stav bez záměru s počáteční akustickou situací je patrné, že ve výpočtovéch bodech dochází k mírnému zvýšení vypočetných hodnot $L_{A_{eq},T}$. Zvýšení je způsobeno nárůstem ostatní dopravy.

Výhledový stav se záměrem

Varianta 1

Vypočetně hodnoty pro budoucí stav se záměrem se pohybují v intervalu $L_{A_{eq},16h} = 35,7$ až 65,0 dB. V noční době se vypočetně hodnoty pohybují v intervalu $L_{A_{eq},8h} = 29,9$ až 59,1 dB. Ve všech kontrolních výpočtovéch bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž.

Varianta 2

Vypočetně hodnoty pro budoucí stav se záměrem se pohybují v intervalu $L_{A_{eq},16h} = 29,4$ až 65,1 dB. V noční době se vypočetně hodnoty pohybují v intervalu $L_{A_{eq},8h} = 22,9$ až 59,2 dB. Ve všech kontrolních výpočtovéch bodech je splněn hygienický limit s korekcí na starou hlukovou zátěž.

Vlivem provozu záměru nedochází ani v jedné variantě záměru k hodnotitelné změně akustické situace v kontrolních výpočtovéch bodech. U chráněných staveb se příspěvek vlivem záměru pohybuje do 0,1 dB. Změna v intervalu 0,1 – 0,9 dB je podle metodického návodu „Výpočtové akustické studie, hodnocení pro účely ochrany veřejného zdraví před hlukem. Obecný rámec. NRL, 11. 9. 2008“ veřejně přístupného na stránkách www.nrl.cz, který je pro potřeby použití schválen hlavním hygienikem ČR pod č.j.: 40874/2008-Ovz-32.1.6-7.11.08, považována za nehodnotitelnou změnu stavu. Navíc změny do ±0,1 dB mohou být způsobeny zaokrouhlovacím procesem výpočtového softwaru.
Grafické znázornění rozložení pásem ekvivalentních hladin akustického tlaku A (hlukové mapy) je uvedeno v přílohové části hlukové studie, která je v plném rozsahu uvedena v příloze číslo 5 dokumentace.

Návrh protihlukového opatření – tiché povrchy

Realizace protihlukového opatření - tichého povrchu - byla předběžně navržena v úsecích ulice Archeologická, kde dochází u některých chráněných staveb v okolí této komunikace k překročení hygienického limitu pro silnice III. třídy i bez navrženého záměru. Tichý povrch byl navržen o délce 125 m v okolí výpočtových bodů V7 a M2 a o délce 150 m v okolí výpočtových bodů V20 a V21 (viz následující obrázek).

Obrázek D5 Situace s umístěním navrhovaných tichých povrchů

Díky použití tichého povrchu dojde ke snížení ekvivalentní hladiny akustického tlaku A (hluku) ve výpočtových bodech nacházejících se v ulici Archeologická. Z výpočtu vyplývá (viz následující dvě tabulky), že v místech, kde je hygienický limit pro komunikace III. třídy 55/45 dB překročen již před realizací záměru, nedojde při použití tichého povrchu vlivem obslužné dopravy záměru „Polyfunkční domy – Centrum Lužiny“ ke zvýšení ekvivalentní hladiny akustického tlaku A. Naopak lze konstatovat, že díky použití tichého povrchu dojde v dotčených bodech k poklesu ekvivalentní hladiny akustického tlaku A pod úroveň hygienického limitu.

V případě výměny části povrchu vozovky v ulici Archeologická za „tichý povrch“ (například technologií VIAPHONE), se dá předpokládat, že v blízkosti úseku komunikace s novým povrchem dojde k poklesu hluku z dopravy na tomto úseku minimálně o 2 až 3 dB. Technologie tichých povrchů VIAPHONE byla v Praze úspěšně odzkoušena na ulici 5. května a Slezská s velmi pozitivním výsledkem. Uvažovaný pokles o 2 až 3 dB je na straně bezpečnosti, neboť v obou případech aplikace vykazovala tato nová technologie zhruba dvojnásobný útlum (přibližně o 4 až 6 dB) oproti uvažovanému poklesu.
Tabulka D10
Výsledky výpočtu ve zvolených kontrolních výpočtových bodech ovlivněných úpravou povrchů komunikace – varianta 1 záměru

<table>
<thead>
<tr>
<th>Č.</th>
<th>Objekt</th>
<th>Výška bodu nad terénem (m)</th>
<th>Výhledový stav bez záměru</th>
<th>Výhledový stav se záměrem</th>
<th>Výhled. stav se záměrem - TICHÝ POVRCH</th>
<th>Pokles vlivem změny povrchu</th>
<th>Hyg. limit komunikace III. třídy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>BD čp. 1881</td>
<td>2,5</td>
<td>56,1</td>
<td>46,4</td>
<td>56,4</td>
<td>46,8</td>
<td>54,5</td>
</tr>
<tr>
<td>V07</td>
<td>BD čp. 1884</td>
<td>4,5</td>
<td>55,9</td>
<td>46,3</td>
<td>56,3</td>
<td>46,7</td>
<td>53,6</td>
</tr>
<tr>
<td>V20</td>
<td>BD čp. 1967</td>
<td>4,5</td>
<td>51,9</td>
<td>42,3</td>
<td>52,0</td>
<td>42,5</td>
<td>50,8</td>
</tr>
<tr>
<td>V21</td>
<td>BD čp. 1959</td>
<td>4,5</td>
<td>49,3</td>
<td>39,8</td>
<td>49,5</td>
<td>40,0</td>
<td>48,1</td>
</tr>
<tr>
<td>V22</td>
<td>BD čp. 2007</td>
<td>4,5</td>
<td>50,1</td>
<td>40,5</td>
<td>50,2</td>
<td>40,6</td>
<td>50,0</td>
</tr>
</tbody>
</table>

Tabulka D11
Výsledky výpočtu ve zvolených kontrolních výpočtových bodech ovlivněných úpravou povrchů komunikace – varianta 2 záměru

<table>
<thead>
<tr>
<th>Č.</th>
<th>Objekt</th>
<th>Výška bodu nad terénem (m)</th>
<th>Výhledový stav bez záměru</th>
<th>Výhledový stav se záměrem</th>
<th>Výhled. stav se záměrem - TICHÝ POVRCH</th>
<th>Pokles vlivem změny povrchu</th>
<th>Hyg. limit komunikace III. třídy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>BD čp. 1881</td>
<td>2,5</td>
<td>56,2</td>
<td>46,6</td>
<td>56,5</td>
<td>46,9</td>
<td>54,6</td>
</tr>
<tr>
<td>V07</td>
<td>BD čp. 1884</td>
<td>4,5</td>
<td>56,1</td>
<td>46,5</td>
<td>56,3</td>
<td>46,7</td>
<td>53,7</td>
</tr>
<tr>
<td>V20</td>
<td>BD čp. 1967</td>
<td>4,5</td>
<td>52,0</td>
<td>42,5</td>
<td>52,1</td>
<td>42,6</td>
<td>50,1</td>
</tr>
<tr>
<td>V21</td>
<td>BD čp. 1959</td>
<td>4,5</td>
<td>49,5</td>
<td>39,9</td>
<td>49,6</td>
<td>40,1</td>
<td>48,1</td>
</tr>
<tr>
<td>V22</td>
<td>BD čp. 2007</td>
<td>4,5</td>
<td>50,2</td>
<td>42,2</td>
<td>50,4</td>
<td>42,6</td>
<td>50,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37,5</td>
<td>53,5</td>
<td>43,9</td>
<td>53,6</td>
<td>44,1</td>
<td>53,0</td>
</tr>
</tbody>
</table>
Stav v roce 2015 – hluk ze stacionárních zdrojů hluku a zdrojové/cílové dopravy záměru na účelových komunikacích

V této kapitole je pro obě varianty záměru zhodnocen hluk z provozu stacionárních zdrojů hluku záměru a hluk ze zdrojové/cílové dopravy záměru na účelových komunikacích zájmového území. Stacionární zdroje hluku záměru jsou tvořeny vzduchotechnickými a chladicími jednotkami a výduchy náhradních zdrojů elektrické energie umístěnými na střeše objektů záměru a sánimi vzduchu pro náhradní zdroje elektrické energie umístěnými na fasádách objektů.

V následujících tabulkách jsou nejprve pro variantu 1 záměru a následně pro variantu 2 záměru uvedeny vypočtené ekvivalentní hladiny akustického tlaku A z obslužné dopravy na účelových komunikacích patřících k navrhovaným objektům (vjezdy a výjezdy z garáží), z provozu stacionárních zdrojů hluku záměru (včetně protihlukových opatření) a také celkově z dopravy na účelových komunikacích a ze všech stacionárních zdrojů hluku v zájmovém území (ve výpočtech byl zohledněn vliv stacionárních zdrojů sousedního objektu – Obchodního centra Lužiny). Provoz dieselagregátů navrhovaného záměru je uvažován 1x měsíčně po dobu 30 minut v denní době (po dobu zkoušek).

Vypočtené ekvivalentní hladiny akustického tlaku A (hluku) jsou prezentovány v následující tabulce.

Tabulka D12 Vypočtené hodnoty L_{Aeq,T} z provozu stacionárních zdrojů a z provozu dopravy záměru na účelových komunikacích – varianta 1 záměru

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Doprava na účelových komunikacích, vč. vjezdů/výjezdů do/z garáží</th>
<th>Stac. zdroje záměru vč. protihluk. opatření s DA po dobu 30 min.</th>
<th>Celkem (stac. zdroje OC Lužiny + stac. zdroje záměru vč. dieselagregátů)</th>
<th>Hygienický limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
</tr>
<tr>
<td>M2</td>
<td>2,5</td>
<td>22,5</td>
<td>< 10,0</td>
<td>12,6</td>
<td>11,7</td>
</tr>
<tr>
<td>V01</td>
<td>4,5</td>
<td>39,2</td>
<td>27,7</td>
<td>23,2</td>
<td>19,0</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>41,4</td>
<td>29,4</td>
<td>24,8</td>
<td>22,0</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>42,1</td>
<td>29,4</td>
<td>25,1</td>
<td>24,4</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>41,9</td>
<td>29,0</td>
<td>28,0</td>
<td>27,7</td>
</tr>
<tr>
<td>V02</td>
<td>4,5</td>
<td>39,6</td>
<td>28,8</td>
<td>29,9</td>
<td>23,8</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>40,5</td>
<td>29,1</td>
<td>33,3</td>
<td>27,7</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>40,6</td>
<td>28,4</td>
<td>33,7</td>
<td>29,9</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>39,8</td>
<td>27,6</td>
<td>35,4</td>
<td>33,3</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>37,0</td>
<td>26,7</td>
<td>31,8</td>
<td>21,6</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>37,6</td>
<td>27,9</td>
<td>34,0</td>
<td>26,5</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>36,2</td>
<td>26,6</td>
<td>34,1</td>
<td>27,1</td>
</tr>
<tr>
<td>V04</td>
<td>4,5</td>
<td>35,9</td>
<td>25,4</td>
<td>37,8</td>
<td>26,0</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>35,7</td>
<td>26,0</td>
<td>39,2</td>
<td>31,9</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>25,3</td>
<td>15,8</td>
<td>36,1</td>
<td>30,1</td>
</tr>
<tr>
<td>Výb. bod</td>
<td>Výška nad terénem (m)</td>
<td>Doprava na účelových komunikacích, vč. vjezdů/výjezdů do/z garáží</td>
<td>Stac. zdroje záměru vč. protihluku, opatření s DA po dobu 30 min.</td>
<td>Celkem (stac. zdroje OC Lužiny + stac. zdroje záměru vč. dieselagregátů)</td>
<td>Hygienický limit (dB)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
<td>Noc</td>
</tr>
<tr>
<td>V20</td>
<td>4,5</td>
<td>22,8</td>
<td>12,8</td>
<td>13,0</td>
<td>< 10,0</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>24,1</td>
<td>14,5</td>
<td>14,4</td>
<td>11,3</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>25,2</td>
<td>15,6</td>
<td>16,6</td>
<td>14,2</td>
</tr>
<tr>
<td>V21</td>
<td>4,5</td>
<td>19,6</td>
<td>13,5</td>
<td>13,2</td>
<td>< 10,0</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>22,5</td>
<td>16,5</td>
<td>13,5</td>
<td>< 10,0</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>24,4</td>
<td>18,4</td>
<td>14,1</td>
<td>< 10,0</td>
</tr>
<tr>
<td>V22</td>
<td>4,5</td>
<td>29,7</td>
<td>18,9</td>
<td>23,8</td>
<td>16,0</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>31,9</td>
<td>21,7</td>
<td>26,8</td>
<td>19,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>33,6</td>
<td>23,2</td>
<td>28,8</td>
<td>22,6</td>
</tr>
<tr>
<td>V23</td>
<td>4,5</td>
<td>37,3</td>
<td>22,3</td>
<td>20,4</td>
<td>17,2</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>39,9</td>
<td>24,9</td>
<td>25,0</td>
<td>19,5</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>40,5</td>
<td>25,7</td>
<td>26,4</td>
<td>22,0</td>
</tr>
<tr>
<td>V24</td>
<td>10,5</td>
<td>39,1</td>
<td>24,6</td>
<td>31,4</td>
<td>14,3</td>
</tr>
<tr>
<td></td>
<td>10,5</td>
<td>34,8</td>
<td>24,3</td>
<td>34,8</td>
<td>29,6</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>20,1</td>
<td>11,2</td>
<td>37,4</td>
<td>33,5</td>
</tr>
<tr>
<td>V26</td>
<td>13,5</td>
<td>44,2</td>
<td>29,6</td>
<td>34,6</td>
<td>11,4</td>
</tr>
<tr>
<td></td>
<td>25,5</td>
<td>42,6</td>
<td>27,8</td>
<td>30,1</td>
<td>13,1</td>
</tr>
<tr>
<td></td>
<td>40,5</td>
<td>40,5</td>
<td>25,9</td>
<td>28,8</td>
<td>23,9</td>
</tr>
<tr>
<td>V27</td>
<td>13,5</td>
<td>49,9</td>
<td>35,7</td>
<td>21,6</td>
<td>18,2</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>48,3</td>
<td>33,9</td>
<td>23,8</td>
<td>20,6</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>45,8</td>
<td>31,8</td>
<td>26,6</td>
<td>24,9</td>
</tr>
<tr>
<td>V28</td>
<td>13,5</td>
<td>49,5</td>
<td>35,9</td>
<td>22,6</td>
<td>18,2</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>48,4</td>
<td>34,1</td>
<td>25,2</td>
<td>20,5</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>45,9</td>
<td>32,1</td>
<td>28,3</td>
<td>26,0</td>
</tr>
<tr>
<td>V29</td>
<td>16,5</td>
<td>42,8</td>
<td>31,6</td>
<td>31,6</td>
<td>21,8</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>42,9</td>
<td>30,7</td>
<td>28,6</td>
<td>25,5</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>42,4</td>
<td>29,7</td>
<td>35,0</td>
<td>34,7</td>
</tr>
<tr>
<td>V30</td>
<td>13,5</td>
<td>35,7</td>
<td>24,6</td>
<td>35,0</td>
<td>27,5</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>37,8</td>
<td>26,0</td>
<td>39,2</td>
<td>37,9</td>
</tr>
<tr>
<td>V31</td>
<td>19,5</td>
<td>17,9</td>
<td>< 10,0</td>
<td>35,1</td>
<td>27,5</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>22,4</td>
<td>11,3</td>
<td>34,2</td>
<td>27,6</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>24,6</td>
<td>12,8</td>
<td>33,9</td>
<td>29,1</td>
</tr>
<tr>
<td>V32</td>
<td>19,5</td>
<td>23,2</td>
<td>11,8</td>
<td>37,8</td>
<td>32,1</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>23,6</td>
<td>13,6</td>
<td>37,3</td>
<td>31,7</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>26,4</td>
<td>14,6</td>
<td>37,4</td>
<td>33,0</td>
</tr>
<tr>
<td>V33</td>
<td>16,5</td>
<td>27,7</td>
<td>13,3</td>
<td>22,6</td>
<td>13,3</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>29,4</td>
<td>15,0</td>
<td>23,5</td>
<td>15,1</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>21,8</td>
<td>< 10,0</td>
<td>23,2</td>
<td>21,7</td>
</tr>
<tr>
<td>V34</td>
<td>16,5</td>
<td>40,9</td>
<td>33,2</td>
<td>29,7</td>
<td>15,3</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>38,5</td>
<td>30,1</td>
<td>25,7</td>
<td>16,1</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>35,8</td>
<td>27,0</td>
<td>24,7</td>
<td>21,5</td>
</tr>
<tr>
<td>V35</td>
<td>16,5</td>
<td>42,3</td>
<td>31,7</td>
<td>29,0</td>
<td>18,4</td>
</tr>
</tbody>
</table>

Prosince 2014
Číslo úkolu: 2014-S-06
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Prosinec 2014
Číslo úkolu: 2014-S-06

Výp. bod

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Doprava na účelových komunikacích, vč. vjezdů/výjezdů do/z garáží</th>
<th>Stac. zdroje záměru vč. protihluk. opatření s DA po dobu 30 min.</th>
<th>Celkem (stac. zdroje OC Lužiny + stac. zdroje záměru (vč. dieselagregátů))</th>
<th>Hygienický limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V37</td>
<td>16,5</td>
<td>31,4</td>
<td>21,2</td>
<td>39,4</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>30,9</td>
<td>21,4</td>
<td>38,8</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>29,3</td>
<td>20,0</td>
<td>38,8</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V38</td>
<td>19,5</td>
<td>18,1</td>
<td>< 10,0</td>
<td>37,9</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>31,5</td>
<td>24,7</td>
<td>12,9</td>
<td>37,5</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>43,5</td>
<td>26,8</td>
<td>15,1</td>
<td>37,6</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V39</td>
<td>19,5</td>
<td>15,7</td>
<td>< 10,0</td>
<td>34,9</td>
<td>Den Noc</td>
</tr>
</tbody>
</table>

Poznámka:
* Stavební objekty, které nemají chráněný venkovní prostor staveb.

Tabulka D13 Vypočtené hodnoty $L_{Aeq,T}$ z provozu stacionárních zdrojů a z provozu dopravy záměru na účelových komunikacích – varianta 1 záměru

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Doprava na účelových komunikacích, vč. vjezdů/výjezdů do/z garáží</th>
<th>Stac. zdroje záměru vč. protihluk. opatření s DA po dobu 30 min.</th>
<th>Celkem (stac. zdroje OC Lužiny + stac. zdroje záměru (vč. dieselagregátů))</th>
<th>Hygienický limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>2,5</td>
<td>19,6</td>
<td>< 10,0</td>
<td>16,2</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>40,1</td>
<td>34,1</td>
<td>30,9</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V01</td>
<td>16,5</td>
<td>42,2</td>
<td>33,3</td>
<td>30,5</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>41,9</td>
<td>32,4</td>
<td>30,1</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>41,3</td>
<td>31,3</td>
<td>30,0</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V02</td>
<td>4,5</td>
<td>40,1</td>
<td>34,1</td>
<td>30,9</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>16,5</td>
<td>40,0</td>
<td>33,3</td>
<td>33,6</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>28,5</td>
<td>39,0</td>
<td>31,5</td>
<td>33,0</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>38,4</td>
<td>30,4</td>
<td>32,6</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V03</td>
<td>4,5</td>
<td>36,9</td>
<td>25,8</td>
<td>31,7</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>37,5</td>
<td>28,0</td>
<td>33,5</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>36,4</td>
<td>27,3</td>
<td>33,4</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V04</td>
<td>4,5</td>
<td>35,9</td>
<td>24,0</td>
<td>37,7</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>36,0</td>
<td>26,7</td>
<td>38,4</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V05</td>
<td>10,5</td>
<td>23,9</td>
<td>16,8</td>
<td>36,0</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V20</td>
<td>4,5</td>
<td>21,3</td>
<td>13,5</td>
<td>11,5</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>23,0</td>
<td>15,4</td>
<td>12,9</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>24,3</td>
<td>16,7</td>
<td>14,5</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V21</td>
<td>4,5</td>
<td>21,0</td>
<td>17,7</td>
<td>13,0</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>22,8</td>
<td>19,8</td>
<td>13,3</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>34,5</td>
<td>24,1</td>
<td>21,1</td>
<td>14,2</td>
<td>Den Noc</td>
</tr>
<tr>
<td>V22</td>
<td>4,5</td>
<td>28,6</td>
<td>19,4</td>
<td>22,6</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>31,1</td>
<td>22,6</td>
<td>25,1</td>
<td>Den Noc</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>33,4</td>
<td>24,5</td>
<td>26,5</td>
<td>Den Noc</td>
</tr>
</tbody>
</table>
Dokumentace záměru

Polyfunkční domy – Centrum Lužiny

<table>
<thead>
<tr>
<th>Výp. bod</th>
<th>Výška nad terénem (m)</th>
<th>Doprava na účelových komunikacích, vč. vjezdů/výjezdů do/z garáží</th>
<th>Stac. zdroje záměru vč. protihluku, opatření s DA po dobu 30 min.</th>
<th>Celkem (stac. zdroje OC Lužiny + stac. zdroje záměru vč. diesela agregátů)</th>
<th>Hygienický limit (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Den</td>
<td>Noc</td>
<td>Den</td>
<td>Noc</td>
</tr>
<tr>
<td>V23</td>
<td>4,5</td>
<td>33,8</td>
<td>22,5</td>
<td>20,7</td>
<td>10,2</td>
</tr>
<tr>
<td></td>
<td>19,5</td>
<td>36,7</td>
<td>24,8</td>
<td>26,1</td>
<td>16,2</td>
</tr>
<tr>
<td></td>
<td>37,5</td>
<td>37,9</td>
<td>26,4</td>
<td>27,6</td>
<td>19,7</td>
</tr>
<tr>
<td>V24</td>
<td>10,5</td>
<td>36,4</td>
<td>16,2</td>
<td>30,6</td>
<td>11,5</td>
</tr>
<tr>
<td>V25</td>
<td>10,5</td>
<td>33,1</td>
<td>26,3</td>
<td>35,6</td>
<td>29,9</td>
</tr>
<tr>
<td>V26</td>
<td>10,5</td>
<td>24,9</td>
<td>17,5</td>
<td>36,9</td>
<td>33,2</td>
</tr>
<tr>
<td>V27</td>
<td>6, NP</td>
<td>38,6</td>
<td>26,0</td>
<td>31,9</td>
<td>12,7</td>
</tr>
<tr>
<td></td>
<td>12, NP</td>
<td>44,2</td>
<td>28,1</td>
<td>30,1</td>
<td>15,1</td>
</tr>
<tr>
<td></td>
<td>19, NP</td>
<td>41,3</td>
<td>25,8</td>
<td>27,9</td>
<td>18,3</td>
</tr>
<tr>
<td></td>
<td>26, NP</td>
<td>36,7</td>
<td>20,1</td>
<td>27,9</td>
<td>25,0</td>
</tr>
<tr>
<td>V28</td>
<td>6, NP</td>
<td>41,1</td>
<td>33,4</td>
<td>33,3</td>
<td>27,3</td>
</tr>
<tr>
<td></td>
<td>12, NP</td>
<td>40,0</td>
<td>33,0</td>
<td>33,7</td>
<td>27,5</td>
</tr>
<tr>
<td></td>
<td>19, NP</td>
<td>38,1</td>
<td>30,7</td>
<td>33,1</td>
<td>27,0</td>
</tr>
<tr>
<td></td>
<td>26, NP</td>
<td>36,2</td>
<td>28,5</td>
<td>32,4</td>
<td>26,9</td>
</tr>
<tr>
<td>V29</td>
<td>6, NP</td>
<td>49,7</td>
<td>37,0</td>
<td>24,8</td>
<td>13,3</td>
</tr>
<tr>
<td></td>
<td>12, NP</td>
<td>46,8</td>
<td>35,0</td>
<td>24,8</td>
<td>14,5</td>
</tr>
<tr>
<td></td>
<td>19, NP</td>
<td>44,0</td>
<td>33,1</td>
<td>24,7</td>
<td>15,4</td>
</tr>
<tr>
<td></td>
<td>26, NP</td>
<td>40,2</td>
<td>29,5</td>
<td>25,0</td>
<td>21,4</td>
</tr>
<tr>
<td>V30</td>
<td>7, NP</td>
<td>21,0</td>
<td>10,1</td>
<td>34,8</td>
<td>26,9</td>
</tr>
<tr>
<td></td>
<td>11, NP</td>
<td>27,3</td>
<td>14,2</td>
<td>33,9</td>
<td>27,0</td>
</tr>
<tr>
<td></td>
<td>19, NP</td>
<td>29,5</td>
<td>16,0</td>
<td>33,3</td>
<td>27,1</td>
</tr>
<tr>
<td></td>
<td>26, NP</td>
<td>22,0</td>
<td>14,3</td>
<td>32,2</td>
<td>27,6</td>
</tr>
<tr>
<td>V31</td>
<td>6, NP</td>
<td>23,7</td>
<td>11,3</td>
<td>21,0</td>
<td>12,1</td>
</tr>
<tr>
<td></td>
<td>11, NP</td>
<td>31,2</td>
<td>18,4</td>
<td>21,7</td>
<td>13,1</td>
</tr>
<tr>
<td></td>
<td>16, NP</td>
<td>32,4</td>
<td>19,2</td>
<td>25,6</td>
<td>24,0</td>
</tr>
<tr>
<td>V32</td>
<td>6, NP</td>
<td>40,7</td>
<td>35,5</td>
<td>29,2</td>
<td>12,7</td>
</tr>
<tr>
<td></td>
<td>11, NP</td>
<td>38,2</td>
<td>31,8</td>
<td>25,4</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>16, NP</td>
<td>35,9</td>
<td>28,7</td>
<td>25,8</td>
<td>23,3</td>
</tr>
<tr>
<td>V33</td>
<td>6, NP</td>
<td>42,4</td>
<td>29,9</td>
<td>30,7</td>
<td>21,2</td>
</tr>
<tr>
<td></td>
<td>12, NP</td>
<td>32,0</td>
<td>21,0</td>
<td>39,4</td>
<td>31,0</td>
</tr>
<tr>
<td></td>
<td>16, NP</td>
<td>35,3</td>
<td>24,4</td>
<td>39,1</td>
<td>30,6</td>
</tr>
<tr>
<td>V34</td>
<td>7, NP</td>
<td>27,4</td>
<td>18,5</td>
<td>37,3</td>
<td>30,3</td>
</tr>
<tr>
<td></td>
<td>11, NP</td>
<td>29,6</td>
<td>21,2</td>
<td>37,3</td>
<td>30,2</td>
</tr>
<tr>
<td></td>
<td>16, NP</td>
<td>31,3</td>
<td>23,2</td>
<td>37,3</td>
<td>30,6</td>
</tr>
<tr>
<td>V35</td>
<td>7, NP</td>
<td>28,8</td>
<td>18,1</td>
<td>34,1</td>
<td>27,5</td>
</tr>
<tr>
<td>V36</td>
<td>6, NP</td>
<td>49,1</td>
<td>38,6</td>
<td>24,3</td>
<td>16,1</td>
</tr>
</tbody>
</table>

*Stavební objekty, které nemají chráněný venkovní prostor staveb.

Poznámka:

* Stavební objekty, které nemají chráněný venkovní prostor staveb.
Vyhodnocení hluku ze stacionárních zdrojů hluku a zdrojové/cílové dopravy záměru na účelových komunikacích

Varianta 1

Vypočtené hodnoty $L_{A_{eq},8h}$ z provozu stacionárních zdrojů záměru se v denní době pohybují v intervalu 12,6 až 39,2 dB. V noční době se vypočtené hodnoty $L_{A_{eq},1h}$ pohybují v intervalu $<10,0$ až 37,9 dB. Vypočtené hodnoty $L_{A_{eq},8h}$ z provozu na účelových komunikacích záměru se v denní době pohybují v intervalu 15,7 až 49,9 dB. V noční době se vypočtené hodnoty $L_{A_{eq},1h}$ pohybují v intervalu $<10,0$ až 35,9 dB.

Z výpočtu vlivu stacionárních zdrojů záměru je patrné, že vypočtené ekvivalentní hladiny akustického tlaku A pro denní a noční dobu nepřekračují hygienický limit hluku 50/40 dB (den/noc). Z výpočtu vlivu dopravy na účelových komunikacích záměru na chráněný venkovní prostor staveb vyplývá, že ve všech výpočtových bodech jsou vypočtené ekvivalentní hladiny akustického tlaku A pro denní i noční dobu nižší než je hygienický limit hluku ze stacionárních zdrojů 50/40 dB (den/noc).

Z výpočtu současného vlivu stávajících stacionárních zdrojů OC Lužiny a nových stacionárních zdrojů záměru je patrné, že vypočtené ekvivalentní hladiny hluku (akustického tlaku A) pro denní/noční dobu nepřekračují v nejbližším chráněném venkovním prostoru staveb zájmového území ani při kumulativním působení všech uvažovaných zdrojů hluku hygienický limit 50/40 dB(A) pro den/noc.

Varianta 2

Vypočtené hodnoty $L_{A_{eq},8h}$ z provozu stacionárních zdrojů záměru se v denní době pohybují v intervalu 11,5 až 39,4 dB. V noční době se vypočtené hodnoty $L_{A_{eq},1h}$ pohybují v intervalu $<10,0$ až 33,2 dB. Vypočtené hodnoty $L_{A_{eq},8h}$ z provozu na účelových komunikacích záměru se v denní době pohybují v intervalu 19,6 až 49,7 dB. V noční době se vypočtené hodnoty $L_{A_{eq},1h}$ pohybují v intervalu $<10,0$ až 38,6 dB.

Z výpočtu vlivu stacionárních zdrojů záměru je patrné, že vypočtené ekvivalentní hladiny akustického tlaku A pro denní a noční dobu nepřekračují hygienický limit hluku 50/40 dB (den/noc). Z výpočtu vlivu dopravy na účelových komunikacích záměru na chráněný venkovní prostor staveb vyplývá, že ve všech výpočtových bodech jsou vypočtené ekvivalentní hladiny akustického tlaku A pro denní i noční dobu nižší než je hygienický limit hluku ze stacionárních zdrojů 50/40 dB (den/noc).

Z výpočtu současného vlivu stávajících stacionárních zdrojů OC Lužiny a nových stacionárních zdrojů záměru je patrné, že vypočtené ekvivalentní hladiny hluku (akustického tlaku A) pro denní/noční dobu nepřekračují v nejbližším chráněném venkovním prostoru staveb zájmového území ani při kumulativním působení všech uvažovaných zdrojů hluku hygienický limit 50/40 dB(A) pro den/noc.
Při dodržení akustických parametrů a počtu stacionárních zdrojů hluku a při dodržení uvažované dopravy záměru na účelových komunikacích budou v obou variantách záměru dodrženy v nejbližších chráněných venkovních prostorech staveb hygienické limity hluku pro denní i noční dobu. V případě, že dojde ke změně počtu stacionárních zdrojů, či změně jejich umístění, bude nutné provést nové posouzení stacionárních zdrojů a případně navrhnout konkrétní protihluková opatření (například jiné umístění jednotek, jiné jednotky, clony a podobně).

Protihluková opatření pro stacionární zdroje a dopravu na účelových komunikacích

Varianta 1

- Nad vjezdem do západního objektu je navržena oddělující konstrukce umístěná ve výšce stropní konstrukce 4. NP. Vyložení protihlukové konstrukce je navrženo minimálně 3,6 m v délce 19 m nad prvním vjezdem do západního objektu.

Stacionární zdroje objektu:

- Chladič umístěný na západním objektu musí být na střeše tohoto objektu umístěn minimálně 3 m od obrysové hrany objektu. V případě bližšího umístění by bylo nutné chladič zatlumit.

Varianta 1 i varianta 2

Doprava:

- V ulici Archeologická je ve dvou úsecích o délce 125 a 150 m navržena výměna stávajícího povrchu vozovky za tichý povrch. Jedná se o povrch přispívající ke snížení emise hluku při styku kola s vozovkou (valení kol).

Obecné prostředky ke snížení přenosu vibrací a hluku:

- zařízení, která jsou zdrojem nežádoucích vibrací a otřesů, budou uložena na kovových či pryzových izolátorách chvění dle doporučení výrobce (VZT, zařízení výtahu, garážová vrata, tepelná čerpadla atd.);
- potrubí na závěsech budou pružně oddělena od stavební konstrukce;
- v případě společného odtaňového potrubí pro ventilátory (digestoře, VZT) jednotlivých bytů doporučujeme do těchto potrubí instalovat tzv. „telefonní“ přeslechové tlumiče tak, aby nedocházelo k přeslechům mezi jednotlivými místnostmi;
- jednotky a ventilátory budou od potrubní sítě odděleny pružnými dilatačními vložkami;
- sokly ve strojovnách a na střeše pod VZT a chladícími jednotkami budou provedeny jako plovcouč;
- do potrubních sítí a vzduchotechnických kanálů budou umístěny tlumiče hluku, přičemž hluk bude eliminován v místě zdroje, to znamená, že tlumiče hluku budou umístovány v těsné blízkosti ventilátorů a jednotek;
- zařízení budou dimenzována ve středních partiích výkonových polí i pro maximální průtok.
konstrukce objektu musí být navrženy tak, aby byl uvnitř chráněných obytných místností dodržen hygienický limit hluku jak z dopravy na blízkých komunikacích, tak z provozu stacionárních zdrojů objektu a obslužné dopravy objektu. Návrh minimální zvukové izolace stavebních konstrukcí objektu bude proveden v dalších stupních projektové dokumentace.

Závěr

Téměř ve všech výpočtových bodech dochází ke splnění hygienického limitu z provozu dopravy na silnicích a místních komunikacích III. třídy. Ve výpočtových bodech, ve kterých dochází k překročení hygienického limitu na komunikacích III. třídy (místní komunikace) jak ve stavu bez záměru tak ve stavu se záměrem, se změna vlivem záměru pohybuje v denní i noční době nejvýše do 0,4 dB (ve variantě 2 nejvýše 0,3 dB).

Přestože dle výše uvedeného metodického návodu nedochází v souvislosti s realizací záměru ani v jedné jeho variantě k hodnotitelné změně akustické situace, byla v místech, kde dochází k překročení hygienického limitu z provozu dopravy již ve stavu bez provozu záměru, navržena realizace tichého povrchu. Díky realizaci tichého povrchu bude zajištěno, že ve výpočtových bodech umístěných v jeho okolí nedojde k nárůstu hodnot L_{Aeq,T} z provozu obslužné dopravy záměru při porovnání se stavem bez záměru a oproti stavu bez realizace záměru dojde v těchto bodech ke snížení hlučnosti z provozu automobilové dopravy.

Z výpočtu vlivu stacionárních zdrojů hluku a dopravy na účelových komunikacích na chráněný venkovní prostor staveb vyplývá, že ve všech výpočtových bodech jsou vypočtené ekvivalentní hladiny akustického tlaku A pro denní i noční dobu nižší než je hygienický limit hluku ze stacionárních zdrojů 50/40 dB (den/noc). Ve variantě 1 záměru je splnění hygienického limitu podmíněno realizací protihlukového opatření. Navrženým protihlukovým opatřením je protihluková konstrukce nad vjezdem do západního objektu, vyložená minimálně 3,6 m v délce 19 m.

D.I.3.2. Vibrace

Výstavba ani provoz záměru „Polyfunkční domy – Centrum Lužiny“ nebudou zdrojem vibrací, které by významně ovlivňovaly okolí záměru nebo jeho vnitřní prostory.

D.I.3.3. Vlivy záření

V území záměru nebudou provozovány otevřené generátory vysokých ani velmi vysokých frekvencí. Žádné vlivy záření v důsledku realizace záměru se nepředpokládají. Výstavbou ani provozem záměru nebude emitováno elektromagnetické záření v úrovních, které by mohly mít zjistitelný negativní dopad uvnitř nebo vně území záměru.

D.I.3.4. Biologické vlivy

V zájmovém území pro výstavbu záměru ani v jeho okolí se v souvislosti s jeho výstavbou a provozem neočekávají, kromě vlivů popsaných v této dokumentaci na jiných místech, žádné další biologické vlivy na životní prostředí.

D.I.3.5. Vliv produkce odpadů

Při odpovědném a kvalifikačním nakládání s odpady vyprodukovanými během výstavby a za běžného provozu záměru „Polyfunkční domy – Centrum Lužiny“ nebude docházet k žádným významným negativním vlivům na životní prostředí ani k ohrožení zdraví obyvatel. Původci odpadů budou nakládat s odpady podle jejich skutečných vlastností, budou je shromažďovat utříděné podle druhů a kategorií a zabezpečí je zejména před nezadoucím únikem ohrožujícím životní prostředí.

Odstranění všech odpadů bude zajištěno subdodavatelsky, za úplatu, na základě smluvního vztahu mezi původci odpadů a externími specializovanými odbornými firmami, zabezpečujícími nakládání s odpady a jejich odstraňování. Tyto firmy budou mít nezbytné souhlasy k provozování zařízení k využívání, odstraňování, sběru nebo výkupu příslušných druhů odpadů.

D.I.3.6. Jiné ekologické vlivy

V zájmovém území pro výstavbu záměru nejsou na základě dostupných poznatků o způsobu provádění stavby, způsobu provozování záměru a povaze prostředí očekávány žádné jiné negativní nebo pozitivní ekologické vlivy než vlivy popsané v této dokumentaci na jiných místech.

D.I.4. Vlivy na povrchové a podzemní vody

D.I.4.1. Vliv na charakter odvodnění oblasti

Povrch zájmového území pro výstavbu záměru je v současné době tvořen zpevněnými plochami žásobovacích dvorů stávajícího obchodního centra Lužiny. Stavba záměru „Polyfunkční domy – Centrum Lužiny“ proto nebude znamenat prakticky žádnou změnu odtokových poměrů a nakládání se srážkovými vodami. Vlivy záměru na odvodnění oblasti budou tvorit zanedbatelné, protože území pro realizaci záměru bude jako dosud zastavěno a srážkové vody budou stejně jako v současnosti odváděny do kanalizace.
D.I.4.2. Změny hydrogeologických charakteristik

Protože objekty záměru nebudou mít podzemní podlaží, nedojde v důsledku výkopových prací, které budou prováděny v rámci stavby záměru, ani vlivem základů objektů záměru k významnému ovlivnění hydrogeologických charakteristik horninového prostředí v zájmovém území. Hydrogeologické charakteristiky horninového prostředí nebudou ovlivněny ani změnou množství dešťových vod zasakovaných do horninového prostředí, protože v souvislosti s realizací záměru se nezmění množství dešťových vod zasakovaných do horninového prostředí (dešťové vody z území záměru budou jako v současnosti odváděny do kanalizace).

D.I.4.3. Vlivy na jakost vod

V průběhu výstavby záměru se nepředpokládá negativní ovlivnění kvality podzemních nebo povrchových vod. V případě úniku paliva nebo mazacího či hydraulického oleje z nákladního automobilu nebo stavebního stroje by tato situace byla řešena jako havárie a znečištění by bylo neodstraněno odstraněno takovým způsobem, aby nedošlo k jeho proniknutí do povrchového nebo podzemního vody (odčerpání ropných látek do vhodné nádoby, odtěžení kontaminované zeminy a její odstranění podle úrovni kontaminace - biodegradace, uložení na skládku, spálení ve spalovně nebezpečných odpadů).

Negativní ovlivnění kvality povrchových nebo podzemních vod se nepředpokládá ani za provozu záměru. Za běžného provozu záměru nebude docházet k úniku znečišťujících látek do podzemních vod. Parkovací plochy a komunikace v hromadných garážích budou nepropustné a budou provedeny jako bezodtoké. Protože tyto plochy nebudou napojeny na kanalizaci, nebude hrozit negativní ovlivnění kvality vod ani v případě úniku ropných látek ze zaparkovaného automobilu.

Vzhledem k tomu, že do kanalizace budou vypouštěny jen splaškové odpadní vody splňující limity kanalizačního řádu a neznečištěné dešťové vody, lze předpokládat, že městská čistírna odpadních vod zajistí před jejich vypuštěním do povrchových vod jejich dostatečné vycišťení.

Záměr není součástí záplavového území vodního toku. Na dotčeném území ani v jeho nejbližším okolí se nenachází žádné chráněné území přirozené akumulace vod (CHOPAV), vodní plocha nebo vodní dílo. Realizaci záměru nebudou ovlivněna pásma hygienické ochrany vod (PHO).

D.I.5. Vlivy na půdu

Vlivy na rozsah a způsob užívání půdy

Realizaci záměru „Polyfunkční domy – Centrum Lužiny“ nedojde k záboru pozemků chráněných jako zemědělský půdní fond (ZPF) ani pozemků určených k plnění funkce lesa (PUPFL). Pozemky pro realizaci záměru jsou v katastru nemovitostí vedeny podle druhu pozemku jako ostatní plocha a podle stávajícího způsobu využití jako jiná plocha. V rámci realizace záměru budou pozemky v zájmovém území využity pro stavbu objektů záměru.
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

V zájmovém území byly v minulosti provedeny rozsáhlé zemní práce v souvislosti s výstavbou současného Obchodního centra Lužiny a přilehlých zpevněných ploch zásobovacích dvorů. V současnosti je celá předmětné území zcela antropogenně změněno, a proto budou vlivy záměru na způsob a užívání půdy zanedbatelné.

Vliv na znečištění půdy

V důsledku realizace záměru se nepředpokládá žádné významné znečištění půdy v zájmovém území. Při provádění stavby by mohlo dojít v důsledku technické závady nebo nehody k úniku paliva nebo mazacího či hydraulického oleje ze stavebního stroje nebo nákladního automobilu. Pokud by k takovému úniku došlo, byla by tato situace řešena jako havárie a znečištění by bylo neprodleně odstraněno.

Za běžného provozu záměru může docházet ke znečištění povrchů vozovek a zejména parkovacích stání v hromadných garážích drobnými úkapy ropných látek z automobilů. Toto znečištění bude průběžně odstraňováno při běžném úklidu a čištění garáží. Kontaminace půdy v zájmovém území se nepředpokládá, protože parkovací stání a pojezdové plochy v garážích budou mít nepropustné povrchy. Případný havarijní únik paliva nebo oleje ze zaparkovaného automobilu na vozovku nebo parkovací stání by byl neprodleně odstraněn.

Rovněž pravděpodobnost úniku oleje nebo nafty z náhradního zdroje elektrické energie (dieselagregátu) bude vzhledem k jeho technickým parametrům a provedení (zabezpečená integrovaná nádrž) minimální. Vzhledem k tomu, že prostory pro náhradní zdroje nebodou napojeny na kanalizaci, nehrozilo by ani případném úniku ropných látek jejich vniknutí do kanalizace. Znečištění půdy v důsledku jiných činností provozovaných v rámci záměru se nepředpokládá.

Vliv na změnu místní topografie, vliv na stabilitu a erozi půd

D.I.6. Vlivy na horninové prostředí a přírodní zdroje

V zájmovém území se nenacházejí žádné zdroje nerostných surovin ani jiné přírodní zdroje. Vzhledem k charakteru stavby nebude mít realizace záměru významné vlivy na horninové prostředí v zájmovém území. Realizace zájmu nebude mít žádné negativní vlivy na přírodní zdroje a jejich využívání.

D.I.7. Vlivy na faunu, flóru a ekosystémy

Flóra, fauna a ekosystémy nebudou významně ovlivněnou složkou životního prostředí. V důsledku stavajícího využití antropogenně ovlivněné lokality lze v zájmovém území pro realizaci zájmu vyloučit přítomnost cenných lokalit výskytu fauny a flóry a hodnotných ekosystémů.
D.I.7.1. Vlivy na flóru

Prakticky veškerá výstavba v rámci záměru bude realizována v plochách, které jsou již v současnosti zastavěny. Výjimkou budou vjezdy do východního objektu záměru (objekt Beta). Zde dojde k záboru malé plochy nekvalitní a neperspektivní zeleně v prostoru (na okraji) stávajícího parkoviště.

V souvislosti s realizací záměru bude nutno pokácet až 11 stromů situovaných při západní a východní hranici záměru, kde v současnosti nemají dostatečný kořenový prostor pro zdárný budoucí rozvoj. Stav hodnocených dřevin lze shrnout jako průměrný, u některých dřevin zhoršený. Jakékoli kácení dřevin bude provedeno pouze na základě příslušného povolení a v souladu s jeho podmínkami. Investor zajistí po dohodě s příslušným úřadem odpovídající náhradní výsadbu zeleně.

Podle projektu nové výstavby bude zeleň nacházející se na plochách výstavby odstraněna a zeleň v zelených plochách situovaná v blízkosti záměru bude zachována a rekonstruována. Zeleň bude uplatněna i na fasádách hlavních stavebních objemů, formou zelených, popínavých, většinou hydroponických stěn. Veškeré sadovnické práce budou prováděny v souladu s příslušnými normami předpisy.

Z výše uvedených důvodů se v důsledku realizace záměru nepředpokládají významné vlivy na rostlinstvo.

D.I.7.2. Vlivy na faunu

D.I.7.3. Vlivy na ekosystémy

Vzhledem k současnému stavu území nedoraz výstavbou záměru k žádnému významnému zásahu do ekosystémů, protože v plochách určených k výstavbě záměru nebyl výskyt složitějších ekosystémů identifikován. Vlivy na ekosystémy v důsledku výstavby a provozu záměru budou z uvedených důvodů zanedbatelné.
D.I.7.4. Vlivy na územní systémy ekologické stability (ÚSES)

Zájmové území nelze považovat za prostředí přirozené, ani přírodě blízké. Z hlediska širších územních vazeb je lokalita situována v plně urbanizovaném prostoru. Realizací záměru nedojde k žádnému zásahu do prvků územního systému ekologické stability (ÚSES), protože v plochách určených k výstavbě ani v jejich blízkosti se žádné prvky ÚSES nenalézají.

D.I.7.5. Vlivy na soustavu Natura 2000

D.I.8. Vlivy na krajinu

Na úvod této části hodnocení vlivů záměru je třeba zdůraznit, že předmětem hodnocení podle zákona 100/2001 S., o posuzování vlivů na životní prostředí, není hodnocení architektonického řešení objektů. To je předmětem dalších (následujících) stupňů projektové přípravy a povolování záměru (územní rozhodnutí, stavební povolení).

Vlivy na krajinu

Na základě hodnocení vlivu obou variant navrhované stavby na pozitivní hodnoty a významné rysy jednotlivých charakteristik krajiného rázu a estetické a prostorem hodnoty je možno odpovědět na tři otázky:

- Vyznačuje se ráz krajin v prostoru, dotčeném vlivem navrhované zástavby, znaky přírodní, kulturní a historické charakteristiky krajiného rázu a hodnotami estetickými, mají přítomné znaky a hodnoty jedinečný význam?
 Ráz krajin v potenciálně dotčeném krajiném prostoru se vyznačuje znaky a hodnotami charakteristik krajiného rázu, přičemž některé z těchto hodnot je možno považovat za jedinečné (Prokopovské údolí, Vidoule).

- Pokud jsou přítomní znaky jedinečného a neopakovatelného významu, bude do nich navrhovaná stavba nepříznivě zasahovat a jakou měrou?
 Navrhovaná stavba nezasahuje do hodnot jedinečného charakteru, protože se tyto hodnoty nacházejí mimo vizuální vliv (Prokopovské údolí, Vidoule).
Ovlivní navrhovaná změna podstatným způsobem krajiná panorama, bude zasahovat do cenných dílčích scenerií?
Navrhovaná stavba se bude v krajiných panoramech projevovat většinou minimálně nebo, v případě varianty 2 záměru, v určitých směrech (od Ořechu a Barrandova) omezeně. Nebude zasahovat do cenných dílčích scenerií, které je možno pozorovat pouze v krajiných celcích (údolí Dalejského potoka, Vidoule) ohraničujících potenciálně dotčený krajiný prostor.

Na základě hodnocení vlivu obou variant navrhovaného záměru lze shrnout, že navrhovaná stavba „Polyfunkční domy – Centrum Lužiny“ zasahuje následujícím způsobem do kritérií krajiného rázu uvedených v odst. (1) § 12 zákona číslo 114/1992 Sb.:

(a) k první větě odst. (1) „Krajinný ráz, kterým je zejména přírodní, kulturní a historická charakteristika určitého místa či oblasti, je chráněn před činností snižující jeho estetickou a přírodní hodnotu“:
- vliv na rysy a hodnoty přírodní charakteristiky ŽÁDNÝ
- vliv na rysy a hodnoty kulturní charakteristiky ŽÁDNÝ
- vliv na estetické hodnoty ŽÁDNÝ

(b) k druhé větě odst. (1) „Zásahy do krajiného rázu, zejména umísťování a povolování staveb, mohou být prováděny pouze s ohledem na zachování významných krajiných prvků, zvláště chráněných území, estetických hodnot, kulturních dominant krajiny, harmonického měřítku a harmonických vztahů v krajině“
- vliv na významné krajinné prvky ŽÁDNÝ
- vliv na zvláště chráněné území ŽÁDNÝ
- vliv na kulturní dominanty krajin ŽÁDNÝ
- vliv na harmonické měřítko krajin ŽÁDNÝ
- vliv na harmonické vztahy v krajině ŽÁDNÝ

Odůvodnění výše uvedených skutečností je shrnuto v následující tabulce.

Tabulka D14 Tabulka vlivu navrhované stavby na zákonná kriteria KR (§12) – varianta 1 i variant 2 záměru

<table>
<thead>
<tr>
<th>Vliv na rysy a hodnoty přírodní charakteristiky</th>
<th>Vliv záměru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odůvodnění: Navrhovaný záměr ve výrazně urbanizovaném území nemůže fyzicky zasahovat do rysů a hodnot přírodní charakteristiky. Nemůže ani snižovat vizuální význam přírodních hodnot Centrálního parku ani údolí Dalejského potoka. Horizont Vidoule nebude navrhovanou stavbou dotčen.</td>
<td>nemá vliv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vliv na rysy a hodnoty kulturní a historické charakteristiky</th>
<th>Vliv záměru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odůvodnění: Řešené území nevykazuje cennější znaky a hodnoty kulturní a historické charakteristiky. Ty se objevují v širších souvislostech v přítomnosti fragmentu původního zástavby Stodůlek s kostelem Sv. Jakuba Většího. Vzhledem k poloze záměru v centru Lužin nebudou tyto hodnoty fyzicky dotčeny ani vizuálně ovlivněny. V úhrnu z hlediska vlivu záměru na kulturní a historickou charakteristiku tohoto segmentu městské krajiny posuzovaný záměr nevykazuje žádné konflikty s identifikovanými kulturně-historickými hodnotami či dominantami.</td>
<td>nemá vliv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vliv na zvláště chráněná území (ZCHÚ)</th>
<th>Vliv záměru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odůvodnění: Vzhledem k charakteru záměru a vzdálenosti nejbližších maloplošních ZCHÚ nelze předpokládat jakýkoli vliv.</td>
<td>nemá vliv</td>
</tr>
</tbody>
</table>
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

4 Vliv na významné krajinné prvky (VKP)

Odůvodnění: V okolí záměru se VKP ze zákona neobjevují. Proto nelze předpokládat negativní vliv záměru na VKP.

5 Vliv na kulturní dominanty

Odůvodnění: V řešeném území nejsou přítomny zřetelné kulturní dominanty ve smyslu zákona, proto do nich záměr nemá vliv. Možnosti průhledů ze severozápadu přes dominantu kostela Sv. Jakuba Většího jsou z veřejných prostranství velmi omezené a tak se záměr promítá do skupiny s existujícími výškovými objekty.

6 Vliv na estetické hodnoty

Odůvodnění: V potenciálně dotčeném krajinm prostoru jsou estetické hodnoty, harmonické měřítko a vztahy přítomny v parkové kompozici Centrálního parku, kam vliv navrhované stavby nezasahuje. Další takové hodnoty jsou přítomny v celoměstském panoramatu Jihozápadního města, kde však vliv záměru je patrný pouze minimálně.

7 Vliv na harmonické měřítko krajiny

Odůvodnění: Projev harmonického měřítka krajiny je velmi omezený v silně urbanizovaném území s mořem bytové výstavby především dvanáctipodlažních superbloků. Estetické hodnoty, harmonické vztahy a harmonické měřítko urbánní krajiny se projevují v celkových panoramatech Jihozápadního města z jiho, kde však navrhovaná stavba představuje pouze zanedbatelnou změnu.

8 Vliv na harmonické vztahy v krajině

Odůvodnění: Harmonické vztahy v daném urbánním prostoru jsou záležitostí urbanistické kompozice nebo v parkovém prostoru Centrálního parku záležitosti architektonicko-krajinářské kompozice. Harmonické vztahy ani harmonické měřítko v celkových panoramatech Jihozápadního města v jeho krajinm rámcí nejsou přítomny. Navrhovaná stavba do nich proto nezasahuje.

Jak bylo předchozími analýzami prokázáno, navrhovaný záměr „Polyfunkční domy – Centrum Lužiny“ nepředstavuje ani v jedné variantě zásah do znaků a hodnot jednotlivých charakteristik krajiného rázu dotčené krajiny a do zákonných kritérií dle §12 zákona 114/1992 Sb., o ochraně přírody a krajiny. Navrhovaný záměr je v obou variantách v souladu s požadavky ochrany krajiného rázu HMP.

Navrhovaný záměr je v obou variantách navržen s ohledem na kritéria ochrany krajiného rázu dle §12 zákona 114/1992 Sb., o ochraně přírody a krajiny, a proto hodnocen jako únosný zásah do krajiného rázu, chráněného dle zákona.

Velkoplošné vlivy v krajině

Lokalita je situována v městském prostředí významně ovlivněném působením člověka, vzhledem k charakteru záměru nebude výstavba záměru znamenat významné terénní úpravy. S ohledem na stávající stav okolní městské krajiny a charakter stavby se nejedná o záměr, který by mohl mít velkoplošný negativní vliv na krajinu a její sídelní funkci. Z hlediska velkoplošných vlivů v krajině představuje realizace záměru „Polyfunkční domy – Centrum Lužiny ” přijatelné využití území.
D.I.9. Vlivy na hmotný majetek a kulturní památky

Výstavbou ani provozem záměru nedojde k nepříznivému ovlivnění hmotného majetku nebo kulturních památek, popsanych v kapitole dokumentace „C.2.10. Hmotný majetek a kulturní památky“. Realizací záměru dojde k pozitivnímu ovlivnění hmotného majetku investora a technické infrastruktury v zájmovém území.

D.I.10. Doplňující údaje

D.I.10.1. Vlivy na přirozené provětrávání území

V současnosti lze přirozené provětrávání území hodnotit následovně:

a) Hodnocené území patří k relativně velmi dobře provětrávaným částem města.

b) Přirozené ventilační podmínky území jsou ve smyslu definice ventilačního faktoru z důvodu topografie okolního terénu velmi dobré;

c) Pětistupňová komplexní klasifikace bonity klimatu Prahy řadí hodnocené území do kategorie přijatelné bonity klimatu.

d) Hodnoty parametru urbanizace zájmového území se nacházejí v dolní části doporučovaného optimálního intervalu hodnot, hodnoty parametru hustoty zástavby se nacházejí v oblasti optimálních hodnot z hlediska vlivu charakteru zástavby na provětrávání;

e) 31 % hodnoceného území lze podle hodnot koeficientu provětrávání území zařadit do kategorie velmi dobrého provětrávání a 48 % území do kategorie dobrého provětrávání. Do kategorie zhoršeného provětrávání spadá pouze jeden čtverec, což odpovídá zhruba 2 % hodnoceného území.

Z provedené analýzy vyplývá, že realizace varianty 1 záměru se na charakteru přirozeného provětrávání území projeví nejspíše následovně:

- V porovnání se současným stavem dojde na přibližně 1/3 plochy hodnoceného území ke zhoršení přirozeného provětrávání, přičemž přibližně 2/3 plochy se dopad výstavby nedotkne;

- Významnější zhoršení přirozeného provětrávání území lze předpokládat ve zcela nejbližším okoli objektu BETA a stávajícího Obchodního centra Lužiny;

- Mírné zhoršení přirozeného provětrávání území lze předpokládat v prostoru velmi malé části residenčních ploch podél ulice Brdičkova (objekty čp. 1908, případně 1910), podél ulice Piškova (objekty čp. 1954 až 1962) a objektů čp. 1881 až 1884 podél ulice Archeologická;

- Oblast mírného zhoršení může velmi pravděpodobně zasáhnout i území v okolí objektů čp. 2621, 2636 a kruhového objektu ev. č. 24/2 v prostoru mezi ulicemi Brdičkova, Podpěrova, Zázvorkova a Piškova, byť již pouze zcela hraněními hodnotami;
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

- V severních a jižních částech hodnoceného území se dopad realizace výstavby neprojeví, respektive změny přirozeného provětrávání bude možno považovat za zanedbatelné.

- Žádná obytná část hodnoceného území se neposune do oblasti zhoršeného nebo špatného provětrávání.

Z provedené analýzy vyplývá, že realizace varianty 2 záměru se na charakteru přirozeného provětrávání území nejvprve nejasné následovně:

- V porovnání se současným stavem dojde na přibližně 1/3 plochy hodnoceného území ke zhoršení přirozeného provětrávání, na 3 % plochy lze toto zhoršení kvalifikovat jako významné, přičemž na 2/3 plochy se dopad realizace výstavby prakticky neprojeví;

- Významnější zhoršení přirozeného provětrávání území lze předpokládat v nejблиžším okolí objektů ALFA a BETA, to známená v prostoru kolem vstupu do stanice metra Lužiny do ulice Archeologická a v prostoru současných parkovacích ploch položených západně (k ulici Brdičkova) a východně (k ulici Piškova) od stávajícího Obchodního centra Lužiny;

- Oblast mírného zhoršení může velmi pravděpodobně zasáhnout i území v okolí objektů čp. 2621, 2636 a kruhového objektu evidenční číslo 24/2 v prostoru mezi ulicemi Brdičkova, Podpěřova, Zázvorkova a Piškova;

- V severních a jižních částech hodnoceného území se dopad realizace výstavby prakticky neprojeví, respektive změny přirozeného provětrávání bude možno považovat za zanedbatelné.

- Žádná obytná část hodnoceného území se neposune do oblasti zhoršeného nebo špatného provětrávání.

Pro obě varianty záměru lze na základě závěrů studií předpokládaného vlivu výstavby objektů záměru na přirozeně provětrávání území shrnout, že zjištěné změny přirozeného provětrávání zájmového území nejsou tak významné, aby se případně staly zásadní překážkou realizace hodnoceného záměru. Studie rovněž dokazují, že realizace záměru ve variantě 1 je z hlediska změn provětrávání příznivější než záměr ve variantě 2.

D.II. Komplexní charakteristika vlivů záměru na životní prostředí z hlediska jejich velikosti a významnosti a možnosti přeshraničních vlivů

D.II.1. Komplexní charakteristika vlivů záměru na životní prostředí z hlediska jejich velikosti a významnosti

Nejvýznamnější potenciální vlivy výstavby a provozu obou variant záměru „Polyfunkční domy – Centrum Lužiny“ se předpokládají na kvalitu ovzduší a na hlukovou zátěž v zájmovém území a v jeho nejbližším okolí.

Prosinec 2014
Číslo úkolu: 2014-S-06
Vlivy výstavby a provozu záměru na jednotlivé sektyřy životního prostředí a zdraví obyvatelstva jsou pro obě varianty záměru podrobně vyhodnoceny ve specializovaných studiích, které jsou uvedeny v přílohové části dokumentace (zejména rozptylové studie, hlukové studie, hodnocení vlivů na veřejné zdraví, studie vlivu na přirozené provětrávání území, posouzení vlivu na krajinný ráz a další), a souhrnně v předcházející kapitole dokumentace D.I. Charakteristika předpokládaných vlivů záměru na obyvatelstvo a životní prostředí a hodnocení jejich velikosti a významnosti.

Z hlediska celkově úrovně imisní zátěže v ovzduší lze charakterizovat hodnocenou lokalitu jako mírně až středně zatíženou. Negativní vlivy záměru na kvalitu ovzduší se mohou projevit v důsledku mírného nárůstu emisí do ovzduší způsobeného automobilovou dopravou související s provozem záměru. Vzhledem k velikosti a charakteru záměru nebudou tyto vlivy významné a budou se týkat především obyvatel nejbližších obytných domů v ulicích, kterými bude vedena doprava související s jeho provozem.

U žádné sledované imisní charakteristiky nebylo vlivem uvedení záměru do provozu vypočteno překročení imisního limitu. Vlivy záměru na kvalitu ovzduší možno hodnotit v obou variantách jako nevýznamné. Realizace záměru nebudou mít určující vliv na imisní zatížení předmětné lokality. Ani u jedné varianty nepřekročí příspěvky z provozu záměru u průměrných ročních koncentrací 1 % imisního limitu u žádné ze sledovaných látek. Posuzovaný zdroj tak nebude mít z hlediska zákona č. 201/2012 Sb. na území nadměrný vliv a nebudou nutné kompenzační opatření.

Z hlediska hodnocení zdravotních rizik znečištění ovzduší souvisejícího se záměrem jsou závěry pro obě varianty záměru stejné. Vypočtený předpokládaný imisní příspěvek záměru, daný navýšením objemu dopravy a parkování vozidel souvisejících s provozem záměru, bude z hlediska zdravotního rizika znečištění ovzduší pro obyvatele dotčeného území u všech hodnocených škodlivých sekvencí zanedbatelný a kvantitativně prakticky nehodnotitelný.

Relativně významnější může být, při souběhu nejméně příznivých emisních a rozptylových podmínek, vlastní etapa výstavby. I když tento vliv sám o sobě nedosahuje významně úrovni, je opodstatněn s ohledem na obyvatele nejbližších bytových domů důsledně plnit opatření ke snížení prašnosti a k omezení emisí ze stavební činností a staveništní dopravy při inverzních situacích, navržená zpracovatelem rozptylové studie.

Dominantním zdrojem hluku v zájmovém území je automobilová doprava. Na základě provedeného matematického modelování počáteční akustické (hlukové) situace v zájmovém území a jednorázového (kalibračního) měření je možno hodnotit území podél odjezdových a příjezdových tras k záměru jako území s částečně zvýšenou hlukovou zátěží.

I po realizaci záměru je téměř ve všech výpočtových bodech plněn hygienický limit z provozu dopravy na silnicích a místních komunikacích III. třídy. Ve výpočtových bodech, ve kterých dochází k překročení hygienického limitu na komunikacích III. třídy (místní komunikace) jak ve stavu bez záměru tak ve stavu se záměrem, se změna vlivem záměru pohybuje v denní i noční době nejvýše do 0,4 dB (ve variantě 2 nejvýše 0,3 dB)

Přestože dle výše uvedeného metodického návodu nedochází v souvislosti s realizací záměru ani v jedné jeho variantě k hodnotitelné změně akustické situace, byla v místech, kde dochází k překročení hygienického limitu z provozu dopravy již ve stavu bez provozu záměru, navrženo protihlukové opatření - realizace tichého povrchu. Realizací tichého povrchu bude zajištěno, že ve výpočtových bodech umístěných v jeho okolí nedojde k nárůstu hodnot $L_{Aeq,T}$ z provozu obslužné dopravy záměru při porovnání se stavem bez záměru a oproti stavu bez realizace záměru dokonce dojde v těchto bodech ke snížení hluku z provozu automobilové dopravy.

Z výpočtu vlivu stacionárních zdrojů hluku a dopravy na účelových komunikacích na chráněný venkovní prostor staveb vyplývá, že ve všech výpočtových bodech jsou vypočtené ekvivalentní hladiny akustického tlaku A pro denní i noční dobu nižší než je hygienický limit hluku ze stacionárních zdrojů 50/40 dB (den/noc). Ve variantě I záměru je splnění hygienického limitu podmíněno realizací protihlukového opatření. Navrženým protihlukovým opatřením je protihluková konstrukce nad vjezdem do západního objektu, vyložená minimálně 3,6 m v délce 19 m.

Na základě výsledků komplexního hodnocení vlivů záměru na akustickou situaci v zájmovém území záměru a v jeho okolí a specializovaných hodnocení vlivů záměru na veřejné zdraví lze konstatovat, že při splnění navržených protihlukových opatření nepovede realizace záměru k prokazatelné změně zdravotního rizika hluku pro stávající obyvatele dotčeného území.

Na základě posouzení záměru provedeného v této dokumentaci je možno konstatovat, že v důsledku jeho výstavby a provozu nebude ve srovnání se stavem bez realizace záměru docházet k významnému negativnímu ovlivnění životního prostředí nebo zdraví obyvatel. Po zhodnocení všech parametrů stavby a jejích možných pozitivních i negativních vlivů na životní prostředí dospěl zpracovatel dokumentace k závěru, že stavbu je možno realizovat.

D.II.2. Přeshraniční vlivy

Výstavba ani provoz záměru nebudou mít žádné vlivy přesahujících státní hranice.
D.III. Charakteristika environmentálních rizik při možných haváriích a nestandardních stavech

D.III.1. Období výstavby

Během výstavby obou variant záměru se uvažují stejné rizika:
- individuální riziko pracovního úrazu pro zaměstnance na pracovišti
- riziko úniku ropných látek z dopravního prostředku nebo stavebního stroje na staveništi
- riziko požáru.

Při provádění stavby by mohlo dojít k úniku paliva nebo mazacího či hydraulického oleje ze stavebního stroje nebo nákladního automobilu. Případná havárie by byla neprodleně odstraněna běžnými prostředky pro likvidaci následků havárie tohoto typu. Kontaminovaná stavební suť nebo zemina by byla odtdělena, uložena do nepropustného kontejneru a předána specializované firmě k odstranění podle úrovně kontaminace (biodegradace, uložení na vhodnou skládku, spálení ve spalovně nebezpečných odpadů). Vzhledem k moderním technologiím výstavby je riziko takové havárie minimalizováno.

Příčinou vzniku požáru na stavbě může být například zkrat v elektrickém zařízení nebo kabelových rozvodech, vznícení hořlavé látky při poruše stavebního stroje nebo zapálení hořlavého materiálu při nedodržení stavební kázně a předepsaných pracovních postupů na staveništi (zejména požár v důsledku nepozornosti nebo nekázně při svařování). V případě požáru bude prioritně zamezeno jeho šíření a požár bude uhašen vlastními silami za použití profesionálních hasicích prostředků umístěných na staveništi. V případě většího požáru budou neprodleně přivolány profesionální hasiči a záchranná služba.

Vedení stavby bude dbát na to, aby stavba byla prováděna v souladu s platnými předpisy a normami a přijme taková preventivní opatření, aby pravděpodobnost vzniku havárií v průběhu stavby byla minimalizována. Součástí dokumentace stavby bude havarijní plán, který bude mimo jiné obsahovat postupy pro likvidaci případné ropné havárie a instrukce pro případ požáru, včetně zásad evakuace osob, se kterými budou povinně seznámeni všichni pracovníci na stavbě.

D.III.2. Období provozu

Běžný provoz záměru nebude představovat pro obyvatele záměru a jejich návštěvníky ani pro zaměstnance a návštěvníky nebytových částí záměru žádná významná rizika. Běžný provoz záměru nebude představovat žádná významná rizika ani pro obyvatele, návštěvníky nebo zaměstnance okolních objektů. Objekty realizované v rámci záměru budou splňovat veškeré platné právní a technické normy pro ochranu zdraví a životního prostředí a jejich provoz bude zajištěn tak, aby možnost vzniku nepředvidaných událostí byla minimalizována. Riziko bezpečnosti provozu by tedy představovala pouze havárie nebo mimořádná událost.
Možnost vzniku havárií

V níže uvedené tabulce jsou shrnuty uvažované typy nežádoucích událostí, ke kterým by hypoteticky mohlo dojít vzhledem k typu a rozsahu činností prováděných v objekttech záměru, včetně druhu možného rizika, které by tato nežádoucí událost znamenala. Všechny vyjmenované nežádoucí události by pro majitele objektů, majítele nebo nájemníky bytů a pro nájemníky a uživatele jednotlivých nebytových prostor v objekttech záměru znamenaly i ekonomické riziko.

Tabulka B32 Přehled možných nežádoucích událostí

<table>
<thead>
<tr>
<th>Typ možných nežádoucí událostí</th>
<th>Druh rizika*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Únik nebezpečných látek</td>
<td>Individuální riziko, (environmentální riziko)</td>
</tr>
<tr>
<td>Požár</td>
<td>Hromadné riziko, environmentální riziko</td>
</tr>
<tr>
<td>Zkrat v elektrickém zařízení nebo kabelových rozvodech a případný požár</td>
<td>Hromadné riziko, (environmentální riziko)</td>
</tr>
<tr>
<td>Úder blesku</td>
<td>(Hromadné riziko)</td>
</tr>
<tr>
<td>Teroristický čin</td>
<td>Hromadné riziko, environmentální riziko</td>
</tr>
</tbody>
</table>

* V tabulce uváděné individuální riziko představuje riziko osoby v blízkosti zdroje rizika. Hromadné riziko je riziko, jemuž může být vystavena skupina osob ovlivněných nežádoucí událostí. Environmentální riziko představuje riziko poškození životního prostředí. V závorce uvedená rizika jsou málo pravděpodobná

Následky havárií, preventivní opatření

1) Únik nebezpečných látek

V objekttech záměru „Polyfunkční domy – Centrum Lužiny“ se předpokládá používání, případně skladování následujících chemických látek a přípravků:
- freony (vzduchotechnika, chladící zařízení)
- desinfekční a čistící přípravky pro úklid
- materiály pro údržbu (oleje, mažadla, barvy, ředidla a podobně)
- pohonné hmoty a oleje v automobilech zaparkovaných v hromadných garážích a v náhradních zdrojích elektrické energie (dieselagregátech).

a) Freony (vzduchotechnika, chladící zařízení)

V systémech pro chlazení a vzduchotechniku se předpokládá použití výlučně moderních chladiv s nízkým potenciálem škodlivosti vzhledem k životnímu prostředí. Případný masivní únik chladicí látky do okolního prostředí se vzhledem k technickému provedení moderních systémů a jejich velikosti nepředpokládá.

b) Desinfekční a čistící přípravky pro úklid

Pro desinfekci se používají přípravky převážně na bázi sloučenin chloru, k čištění se obvykle používají přípravky na bázi detergentů, případně loulů nebo kyselin. Zejména v koncentrovaném, ale i ve zředěném stavu mohou mít tyto látky nebezpečné vlastnosti (v tomto případě by přicházela v úvahu především dráždivost nebo žíravost přípravků).
Desinfekční a čistící přípravky by měly být skladovány na určeném místě odděleně od ostatních materiálů, a to pouze v originálních obalech. Osoby, které s těmito přípravky manipulují, musí dbát na to, aby nedošlo ke znehodnocení nebo zničení etiket na obalech a následkem toho k nesprávnému nakládání s přípravky nebo k jejich záměně.

Případný únik nebezpečné látky by mohl mít za následek ohrožení zdraví osoby, která s látkou manipuluje. Vzhledem k malému množství skladovaných látek a vzhledem ke způsobu manipulace s nimi (uvnitř objektu) se únik těchto látek do životního prostředí ani ohrožení zdraví obyvatel nepředpokládá.

c) **Materiály pro údržbu**

Materiály pro údržbu (oleje, mazadla, barvy, ředidla, apod.) by měly být, obdobně jako desinfekční a čistící přípravky, skladovány na určeném místě odděleně od ostatních materiálů, a to pouze v originálních obalech. Osoby, které s těmito materiály manipulují, musí dbát na to, aby nedošlo ke znehodnocení nebo zničení etiket na obalech a následkem toho k nesprávnému nakládání s materiály nebo k jejich záměně.

Případný únik nebezpečné látky by mohl mít za následek ohrožení zdraví osoby, která s látkou manipuluje a případně i vznik požáru. Vzhledem k malým množstvím skladovaných látek a vzhledem ke způsobu manipulace s nimi se však únik těchto látek do životního prostředí ani ohrožení zdraví obyvatel nepředpokládá.

d) **Pohonné hmoty a oleje v zaparkovaných automobilech a v náhradních zdrojích elektrické energie (dieselagregátech)**

Pravděpodobnost úniku oleje, nafty či benzínu ze zaparkovaného automobilu do půdy nebo vody bude vzhledem k technickým parametrům osobních automobilů, omezenému množství ropných látek ve vozidlech a provedení parkovacích ploch (nepropustně podlahy) minimální. Vzhledem tomu, že manipulační plochy, vozovky a parkovací stání v hromadných garážích objektu záměru nebudou napojeny na kanalizaci, nehrozí při případném úniku ropných látek jejich vniknutí do kanalizace.

Při eventuálním úniku ropných látek z dopravního prostředku na vozovku nebo parkovací plochu (únik na vlny terén se nepředpokládá) bude havárie neprodleně odstraněna běžnými prostředky pro likvidaci následků havárie tohoto typu (zasypání sorbentem, případně setření sorpční tkaninou).

Rovněž pravděpodobnost úniku oleje nebo nafty z náhradního zdroje elektrické energie (dieselagregátu) bude vzhledem k jeho technickým parametrům a provedení (zabezpečená integrovaná nádrž) minimální. Vzhledem k tomu, že prostory pro náhradní zdroje neprodleně napojeny na kanalizaci, nehrozí ani při případném úniku ropných látek jejich vniknutí do kanalizace.

2) **Požár**

Hlavní příčiny vzniku požáru mohou být následující:
- selhání lidského faktoru - nesprávná manipulace s ohněm nebo hořlavou látkou (ředidlem, čistícími prostředky na bázi hořlavin, atd.)
- zkrat v elektrickém zařízení nebo kabelových rozvodech
- únik a vznícení hořlavé látky v důsledku poruchy zařízení (například pohonných hmot z nádrže motorového vozidla)
- úmyslné založení.

Součástí projektové dokumentace ke stavebnímu řízení bude návrh zařízení pro protipožární zásah, předpokládaný rozsah vybavení objektů požárně bezpečnostním zařízením (hydrantové systémy, elektronická požární signalizace atd.) a nároky na vodu pro hasicí zařízení. V projektové dokumentaci budou také popsány zásady řešení evakuace osob a jejich ochrany v případě požáru (chráněné únikové cesty, atd.).

Pravděpodobnost vzniku požáru bude díky modernímu technickému provedení staveb, modernímu technologickému zařízení a použitým materiálům velmi malá. Rovněž pravděpodobnost vzniku požáru zaparkovaného automobilu nebo dieselagregátu bude vzhledem k technickým parametřům osobních automobilů a použitých dieselagregátů minimální. Dopady případného požáru v objektu nebo v hromadných garážích záměru by byly minimalizovány použitím hasebních prostředků umístěných přímo v objektu a zamezením šíření požáru. V případě požáru budou vždy neprodleně přivoláni profesionální hasiči a v případě potřeby také záchranná služba.

3) Zkrat v elektrickém zařízení nebo kabelových rozvodech a případný následný požár

Dle rozsahu havárie by byly vypnuty příslušné jističe a porucha by byla odborně odstraněna. Případný požár by byl v rámci možností uhašen vlastními silami, ale vždy by byli z bezpečnostních důvodů přivoláni také profesionální hasiči. V případě potřeby by byla přivolána také záchranná služba.

Aby se při výpadku elektrické energie nezastavil se provoz veškerých elektrických systémů (požární signalizace, měření a regulace, atd.) a pohonů (větrání chráněných únikových cest a podobně), zapojí se k bezpečnostním důvodům neprodleně nouzové napájení těch zařízení, která budou zajistovat bezpečnost provozu. Při výpadku elektrické energie proto dojde k okamžitému automatickému nastartování příslušného náhradního zdroje elektrické energie, případně obou zdrojů.

Jako zdroje náhradního napájení elektrickou energií budou v rámci záměru instalovány dva náhradní zdroje elektrického chrání (dieselagregáty) s automatickým startem, které budou zajistovat výrobu elektrické energie pro spotřebiče, u jichž není žádanou přerušení dodávky elektrické energie (zajištění provozu bezpečnostních systémů včetně elektrické požární signalizace, protipožární rozvody, požární vzduchotechnika, odtah tepla a kouře a podobně). Dieselagregáty budou doplněny skříněmi UPS.

4) Úder blesku

5) **Teroristický čin**

Vzhledem k charakteru provozu v objektech záměru a jeho poloze mimo centrální část hlavního města Prahy se riziko teroristického útoku nepředpočítá. Pokud by k teroristickému útoku došlo, byly by všechny osoby pobývající v době útoku v objektech záměru neprodleně evakuovány za pomoci policie, požárníků a záchranné služby a havárie by se likvidovala podle havarijních plánů.

D.IV. Charakteristika opatření k prevenci, vyloučení, snížení, popřípadě kompenzaci nepříznivých vlivů na životní prostředí

D.IV.1. Územně plánovací opatření

Nejsou navrhována.

D.IV.2. Kompenzační opatření

Nejsou navrhována.

D.IV.3. Opatření pro fázi přípravy záměru

Projektová a organizační opatření

- Navrhnout technicko-organizační opatření minimalizující negativní vlivy stavby na životní prostředí (například čištění vozidel vyjíždějících ze staveniště, pravidelná kontrola čistoty komunikací v okolí staveniště a jejich čištění, kontrola dodržování navržených dopravních tras, atd.).
- Specifikovat bilanci stavební suti a výkopových zemin, včetně způsobu zajištění jejich odvozu a určení přepravních tras a míst jejich využití nebo bezpečného odstranění.
- Upravit projekt záměru v obou jeho variantách tak, aby ve stěnách objektů orientovaných k metru bylo možné umístit v 1. nadzemním podlaží drobné služby a obchod nebo alespoň výkladně skříně.
- Ve variantě 1 záměru upravit projekt tak, aby, stejně jako ve variantě 2, byl průchod objektem OC Lužiny doplněn o paralelní venkovní pěší komunikaci podél západní strany záměru. Pro pohyb pěších od stanice metra do ulice Brdečkova navrhnout podél objektu Alfa bezbariérovou venkovní cestu, otevřenou a volně přístupnou 24 hodin denně tak, aby eliminovala původní kolizní dopravní situace a zajišťila bariérový průchod územím.

Ovzduší

- Při výběru dodavatele stavby preferovat společnost, která (nebo její subdodavatel) má dostatečný počet těžkých nákladních automobilů normy alespoň EURO3 a EURO4 na přepravu zeminy.
- Zpracovat režim údržby staveniště a komunikací v okolí stavby zaměřený na ochranu před sekundární prašností.
Hluk
• V ulici Archeologická navrhnout ve dvou úseccích o délce 125 a 150 m výměnu stávajícího povrchu vozovky za tichý povrch. Jedná se o povrch příspívající ke snížení emise hluku při styku kola s vozovkou (valení kol).
• Ve variantě 1 záměru navrhnout nad vjezdem do západního objektu oddělující konstrukci umístěnou ve výšce stropní konstrukce 4. NP. Vyložení protihlukové konstrukce je navrženo minimálně 3,6 m v délce 19 m nad prvním vjezdem do západního objektu.
• Chladič umístěný ve variantě 1 záměru na střeše západního objektu umístí minimálně 3 metry od obrysové hrany objektu. V případě bližšího umístění chladič zatlumit.
• Zařízení, která jsou zdrojem nežádoucích vibrací a otřesů, uložit na kovových či pryskových izolátorech chvění dle doporučení výrobce (VZT, zařízení výtahu, garážová vrata, tepelná čerpadla atd.).
• Potrubí na závěsech budou pružně oddělena od stavební konstrukce.
• V případě společného odtahového potrubí pro ventilátory (digestoře, VZT) jednotlivých bytů se doporučuje instalovat do těchto potrubí tzv. „telefonní“ přeslechové tlumiče tak, aby nedocházelo k přeslechu mezi jednotlivými místnostmi.
• Jednotky a ventilátory budou od potrubní sítě odděleny pružnými dilatačními vložkami.
• Sokly ve strojovnách a na střeše pod VZT a chladicími jednotkami budou provedeny jako plovoucí.
• Do potrubních sítí a vzduchotechnických kanálů budou umístěny tlumiče hluku, přičemž hluk bude eliminován v místě zdroje, to znamená, že tlumiče hluku budou umístovány v těsné blízkosti ventilátorů a jednotek.
• Zařízení budou dimenzována ve středních partiích výkonových polí i pro maximální průtok.
• Konstrukce objektu musí být navrženy tak, aby byl uvnitř chráněných obytných místností dodržen hygienický limit hluku jak z dopravy na blízkých komunikacích, tak z provozu stacionárních zdrojů objektu a obslužné dopravy objektu. Návrh minimální zvukové izolace stavebních konstrukcí objektu bude proveden v dalších stupních projektové dokumentace.
• V rámci projektu pro stavební povolení aktualizovat hlukovou studii pro období výstavby pro konkrétní stacionární zdroje uvažované v projektu a aktuální program organizace výstavby.

Voda
• Vypracovat plán havarijních opatření pro případ úniku látek nebezpečných vodám v průběhu stavby.
• Navrhnout opatření na ochranu vod v období výstavby (řádné skladování látek nebezpečných vodám a podobně).

Odpady
• Vypracovat systém nakládání s odpady pro období stavby zaměřený na jejich třídění, samostatné shromažďování a následné využití či bezpečné odstranění.
D.IV.2. Opatření pro fázi realizace záměru

Projektová a organizační opatření

- Informovat obyvatele v okolí stavby v dostatečném předstihu o délce a charakteru jednotlivých etap výstavby a o době pracovních přestávek. Pro účely informování obyvatel ustanovit kontaktní osobu, na kterou se budou moci občané obratit s případnými žádostmi nebo stížnostmi.
- Dodržovat dostatečně dlouhé přestávky během hlučných operací, aby obyvatelé neblížších objektů měli možnost větrání vnitřních obytných prostor.
- Při výstavbě dodržovat technologickou kázeň na staveništi. Organizaci výstavby řešit tak, aby nedocházelo k nadměrnému obtěžování obyvatel hlučem nebo emisemi do ovzduší.
- Dbát na dobrý technický stav automobilů a stavebních strojů a minimalizovat tak jejich hlučnost, emise do ovzduší a případné úkapy olejů nebo pohonných hmot.
- Zřídit na staveništi - u výjezdů ze staveniště - zpevněnou plochu, která bude využívána jako plocha pro mechanické dočištění vozidel vyjíždějících ze stavby.
- Po dokončení stavebních prací v nejkratší možné lhůtě demontovat a odstranit zařízení staveniště.

Ovzduší

- Omezit rychlost jízdy vozidel v areálu stavby, a to zejména mimo zpevněné vozovky.
- Minimalizovat pojezdů nákladních vozidel po nezpevněné ploše staveniště, případně nejvíce využívané úseky na staveniště zpevnit.
- Pro přepravu odtěžené zeminy a stavebních materiálů přednostně používat těžké nákladní automobily splňující alespoň emisní normy EURO3 a EURO4.
- Důsledným čištěním, případně mytí nákladních vozidel a stavební mechanizace před výjezdem ze staveniště minimalizovat znečištění vozovek a následnou prašnost.
- Aby byla minimalizována prašnost při dopravě prašných sypekých hmot, musí vozidla dopravující tyto materiály používat plachty k jejich zakrytí.
- Provádět pravidelnou kontrolu průjezdových a odjezdových tras v blízkosti staveniště. V případě potřeby zajistit jejich ruční čištění, úklid čistícím vozem anebo mytí kropicím vozem.
- Omezit skladování a deponování prašných materiálů na staveništi na nezbytné technologické minimum.
- V případě zvýšení prašnosti při dlouhodoběm počasí omezovat prašnost zkrápením těžených koupacích a deponovaných zemin a prašných míst v areálu staveniště, případně omezit stavební práce.
- V době výskytu nepříznivých rozptylových podmínek zamezit souběhu stavebních mechanismů poháněných spalovacími motory s vysokým výkonem.

Hluk

- Minimalizovat chod hlučných strojů, zařízení a nákladních automobilů naprázdno. Vypínat po dobu, kdy nejsou v provozu (údržba, odstávky, přestávky, atd.), motory nákladních vozidel a stavebních mechanismů.
- Hlučnější stroje (kompresory, okružní pily) umisťovat v průběhu výstavby do uzavřeného nebo akusticky odděleného prostoru na staveništi.
- Používat hlučné mechanismy nebo technologie pouze v určené době.

Prosincec 2014
Číslo úkolu: 2014-S-06
Stavební práce by měly být realizovány pouze v denní době od 7:00 do 21:00 hodin, z toho hlučné práce pouze v době od 8:00 do 18:00 hodin.

Voda
- Plnění palivy v areálu stavby provádět pouze v nezbytných případech, kdy by plnění mimo areál bylo organizačně neschůdné nebo technicky nerealizovatelné.
- Na staveništi minimalizovat skladování látek škodlivých vodám (například pohonných hmot pro stavební stroje).
- Nezbytná zásobní paliva skladovat odpovídajícím způsobem (například barely umístěné v záchytné vaně).
- Na staveništi neprovádět údržbu mechanismů (výměny mazacích náplní atd.) s výjimkou běžné denní údržby.
- V případě úniku ropných látek ze stavebních mechanismů nebo automobilů neprodleně odtěžit kontaminovanou zeminu a zajistit její odpovídající odstranění.

Odpady
- Třídit a shromažďovat stavební odpad odděleně podle kategorií (nebezpečný a ostatní odpad) a druhů v souladu s vyhláškou číslo 381/2001 (katalog odpadů).
- Vytržený nebezpečný odpad (hadry z běžného čištění mechanismů nasycené olejem nebo mazadly, odpadní barvy a ředidla, atd.) shromažďovat do zvláště označených speciálních nádob dodaných odběratelem odpadu.
- Vybrané druhy odpadů, jako je stavební suť a zemina nakládat přímo na přepravní prostředky a odvážet do určených lokalit k využití, deponování nebo uložení na skládku.
- Zabezpečit shromažďovací prostředky na nebezpečný odpad tak, aby nemohlo dojít k neoprávněné manipulaci s odpady nebo k jejich úniku do životního prostředí.
- Kontejnery s odpadem vyvážet tak často, aby nedocházelo k nepříznivému estetickému, senzorickému nebo hygienickému dopadu na okolní prostředí.
- Přebytečnou zeminu přednostně nabídnout k dalšímu využití.

Zeleň
- Zamezit poškození zeleně mimo prostor staveniště.
- Zamezit během výstavby šíření invazních druhů.

D.IV.3. Opatření pro fázi provozu záměru:

Hluk
- Udržovat stacionární zdroje hluku v dobrém technickém stavu, aby nebyla překročena jejich deklarována hlučnost.

Voda
- Látky závodné vodám skladovat v objektech záměru pouze v nezbytném množství, a to způsobem odpovídajícím platným předpisům a technickým normám.
- V případě havarijního úniku látek nebezpečných vodám zabránit jejich proniknutí do kanalizace.
Odpady

- Zajistit odpovídající odstraňování odpadů (údržba stálých míst pro sběrné nádoby, zajištění dostatek nádob na směsný a tříděný odpad, zajištění včasné vyprazdňování nádob na odpad, atd.).
- Klást důraz na separovaný sběr odpadů.

Zeleň

- Zajistit pravidelnu péči o zeleň.

D.4.4. Opatření pro fázi likvidace stavby

- Zpracovat projekt odstranění stavby.
- Likvidaci stavby provádět podle schváleného projektu v souladu s právními předpisy a standardy platnými v době jejího provádění.
- Všechny odpady odstranit v souladu s legislativou platnou v době odstranění stavby. Odpady v maximálně možné míře rozředit a znovu využít nebo recyklovat (například beton, zelezné a nezelezné kovy, kably a další).

D.V. Charakteristika použitých metod prognózování a výchozích předpokladů při hodnocení vlivů

D.V.1. Použité metody prognózování a výchozí předpoklady při hodnocení vlivů

Pro hodnocení vlivů záměru „Polyfunkční domy – Centrum Lužiny“ na životní prostředí byly použity standardní metody posuzování vlivů na životní prostředí (analogie, aproximace, interpolace, extrapolace).

Pro stanovení významnosti jednotlivých vlivů záměru byly použity jak kvalitativní metody, které vycházejí z vlastních zkušeností specialistů zpracovatele dokumentace v jednotlivých oblastech (doprava, hluk, ochrana ovzduší, flóra a fauna, ochrana půdy a podzemní vody, vlivy na krajinny růz a další), tak kvantitativní metody (matematické modelování imisní a hlukové situace). Pro modelové výpočty byly použity obecně uznávané metody.

Pro predikci vlivů záměru na kvalitu ovzduší v zájmovém území v období stavebních prací a po jeho uvedení do běžného provozu bylo použito matematické modelování gaussovským disperzním modelem rozptylu znečištění v ovzduší ATEM, který je ve vyhlášce číslo 330/2012 Sb. uveden jako jedna z referenčních metod pro stanovení rozptylu znečišťujících látek v ovzduší. Tento model hodnotí imisní situaci na základě podrobných klimatologických a meteorologických údajů.

Hluková situace ve venkovním prostoru byla zjišťována matematickým modelováním. Výpočet ekvivalentních hladin akustického tlaku A v posuzované lokalitě byl proveden pomocí digitálního 3D modelu v prostředí výpočtového software CadnaA. Program umožňuje hodnocení hlukových imisí v souladu s národními a mezinárodními předpisy, včetně výpočtové metody užívané například v České republice a výpočtových metod doporučovaných směrnicí ES 2002/49/EC – Směrnice o hodnocení a řízení hluku v životním prostředí. Software CadnaA tedy umožňuje i výpočet deskriptorů L_{dvn} a L_{dn}.
Výpočet hluku ze silniční dopravy byl proveden v souladu s českou výpočtovou metodikou. Stacionární zdroje byly počítány v souladu s ČSN ISO 9613.

D.V.2. Mapová a jiná dokumentace, týkající se údajů v dokumentaci

Mapová dokumentace, zpracované specializované studie a další hlavní materiály, které byly podkladem pro zpracování dokumentace, jsou uvedeny v přílohové části dokumentace. Projektová dokumentace záměru byla v době zpracování dokumentace vlivů na životní prostředí ve fázi zpracování dokumentace pro územní řízení.

Základním materiálem pro hodnocení záměru byly projektové podklady a informace předané zpracovatelům dokumentace objednatelem a projektanty stavby, specializované studie, podklady a konzultace poskytnuté Magistrátem hl. m. Prahy, literární a mapové podklady, právní předpisy, webové stránky a terénní šetření. Terénní šetření probíhala opakovaně v prvních třech čtvrtletích roku 2012, během roku 2013 a v prvních třech čtvrtletích roku 2014. Hlavní materiály, které byly použity pro zpracování této dokumentace, jsou uvedeny v její kapitole číslo 4 „Seznam použitých podkladů“.

D.V.3. Další podstatné informace oznamovatele

Veškeré podstatné informace oznamovatele o předmětném záměru, které byly známy v době zpracování dokumentace, jsou v předkládané dokumentaci uvedeny. Existují-li další informace, které by mohly mít na zpracování dokumentace zásadní vliv, nebyly zpracovateli dokumentace v době jeho zpracování k dispozici.

D.VI. Charakteristika nedostatků ve znalostech a neurčitostí, které se vyskytovaly při zpracování dokumentace

Při zpracování dokumentace bylo nutno akceptovat následující nedostatky ve znalostech a neurčitostí:

- Projektová příprava stavby byla v době zpracování dokumentace ve fázi dokumentace pro územní řízení, a proto nebyly k dispozici jen některé detailní informace o stavbě.
- Nebyl znám dodavatel stavby ani definitivní plán organizace výstavby.
- Skladba odpadu a jejich množství byla kvalifikována odborně na základě zkušeností projektanta a zpracovatele dokumentace.
- Množství produkovaného odpadu bylo odborně odhadnuto na základě zkušeností projektanta a zpracovatele dokumentace.
- Pro predikci imisních zátěží v oblasti hluku a ovzduší bylo použito matematické modelování, jako nejlepší možné přibližení k budoucímu stavu.
- Výsledky hlukové a rozptylové studie odpovídají stupni rozpracovanosti projektu a podrobnosti poskytnutých vstupních údajů.
- Budoucí intenzity dopravy na posuzované komunikační síti použité v matematických modelech pro výpočet hluku a imisní zátěže v ovzduší jsou odborným odhadem zpracovaným na základě matematického modelování.
- Budoucí intenzity dopravy vyvolané provozem záměru použité v matematických modelech pro výpočet hluku a imisní zátěže v ovzduší jsou odborným odhadem.
Prognózy nárůstů intenzit dopravy vyvolané provozem záměru byly zpracovány na
straně bezpečnosti. Z toho vyplývá, že i případné přírůstky hluku a imisí v ozvduši
v okolí záměru byly stanoveny spíše na horní hranici a tudíž na straně bezpečnosti.

Technologická úroveň vozového parku a jeho emisní parametry byly stanoveny na
základě znalostí současných technologií a předpokládaných trendů obměny vozového
parku v České republice.

Přesnost modelových výpočtů hluku programem CadnaA je v toleranci ± 2 dB od
konvenčně správné hodnoty. Mezi neurčitosti výpočtu patří vstupní údaje –
zaokrouhlení mezi výpočetů, stupeň projektové dokumentace, přesnost mapových
podkladů a podobně.

Pro hodnocení vlivů na zdraví byly ve vztahu k věkové skladbě a zdravotnímu stavu
exponované populace byly použity poslední publikované údaje ÚZIS o populaci
Hlavního města Prahy v roce 2012. Vzhledem nesouměrnosti hlukového a imisního
příspěvku záměru však není přesné stanovení výchozího stavu podstatné.

Technologická úroveň vozového parku a jeho emisní parametry byly stanoveny na
základě znalostí současných technologií a předpokládaných trendů obměny vozového
parku v České republice.

Pro hodnocení rizika znečištění ovzduší vyplývají nejistoty ze současného stupně
poznání o komplexním zdravotním riziku znečištění ovzduší, kde přístup hodnotit
izolovaná jednotlivé škodliviny je nevyhnutelně zjednodušením skutečné situace.
V daném případě bylo tato nejistota snížena použitím nejnovějších vztahů expozice
a účinku doporučených experty WHO, na základě kterých je
připravován autorizační
návod SZÚ Praha pro autorizovaná hodnocení rizika znečištění ovzduší.

Technologická úroveň vozového parku a jeho emisní parametry byly stanoveny na
základě znalostí současných technologií a předpokládaných trendů obměny vozového
parku v České republice.

Při hodnocení rizika hluku byly použity vztahy standardně používané k hodnocení
rizika hluku z dopravy v zemích EU. Je třeba si však uvědomit, že tyto
vztahy a účinky byly odvozeny pro obtěžování vyvolané dlouhodobou hlukovou
imisí a jsou zprůměrněny na celou populaci. Nelze je tedy vztahovat na
jednotlivé osobnosti nebo malé soubory exponovaných osob na jednotlivých fasádách
domů a neplatí těž řešení pro přechodnou hlukovou expozici, například v průběhu stavebních
prací.

Celkově lze podkladové materiály a informace o záměru stavby poskytnuté investorem
a projektantem, specializované studie, dostupné podklady (viz přehled literatury) a další
materiály použité ke zpracování dokumentace hodnotit jako dostačující pro posouzení
záměru a zpracování dokumentace ve smyslu § 8 zákona číslo 100/2001 Sb., o posuzování
vlivů na životní prostředí a o změně některých zákonů, ve znění pozdějších předpisů.

ČÁST E - POROVNÁNÍ VARIANT ŘEŠENÍ ZÁMĚRU (pokud byly předloženy)

Hodnocený záměr stavby „Polyfunkční domy – Centrum Lužiny” je vázán k předmětné
lokalitě, a proto byl v rámci projektové přípravy stavby řešen jen v jedné variantě jejího
umístění. Také z hlediska technologického a stavebně-technického je záměr předkládán
v jedné variantě.
Dokumentace záměru
Polyfunkční domy – Centrum Lužiny

Tam, kde to bylo možné a účelné, byly v jednotlivých kapitolách dokumentace porovnány vlivy provozu záměru se stavem, jaký by byl v území, pokud by záměr nebyl realizován. To znamená, že vlivy provozu záměru byly porovnány s takovými parametry složek životního prostředí, které by existovaly, kdyby k výstavbě záměru nedošlo.

S ohledem na závěr zjišťovacího řízení a vyjádření doručená k oznámení záměru, týkající se velikosti a architektury stavby, bylo zpracováno variantní řešení stavby, které je v dokumentaci označováno jako varianta 2 záměru. V této variantě byl záměr objemově zmenšen a bylo přepracováno architektonické řešení objektů.

Východní objekt záměru (objekt Beta) je ve variantě 2 oproti variantě 1 záměru snížen o jedno podlaží. Ostatní charakteristiky objektu Beta zůstávají ve variantě 2 záměru v zásadě stejné jako ve variantě 1. Západní objekt (objekt Alfa) je ve variantě 2 záměru oproti variantě 1 záměru objemově přepracován a nejsou v něm, na rozdíl od varianty 1, uvažovány administrativní plochy. Objekt Alfa je ve variantě 2 záměru navržen jako čistě bytový.

Ve variantě 2 jsou ve celém půdorysu západního objektu záměru navrženy v prvním až pátém nadzemním podlaží hromadné garáže. Parkovací stání jsou navržena také na části střechy garáže. Obytná část západního objektu se ve variantě 2 soustředí do výškového objektu (věže), který bude umístěn na objektu hromadných garáží. Výškový objekt je navržen přibližně na jedné třetině plochy garáží a pro bydlení se navrhuje 6. až 26. nadzemní podlaží

Vstupy a výstupy obou variant záměru jsou prakticky stejně s výjimkou nároků na dopravní infrastrukturu. Vzhledem k různému počtu a velikosti bytů v objektech záměru a existenci administrativních ploch ve variantě 1 záměru se v obou variantách liší počty parkovacích stání a intenzity automobilové dopravy související s provozem záměru.

Celkový počet parkovacích stání pro potřeby varianty 1 záměru je 349. Celkový počet parkovacích stání navrhovaných v obou objektech záměru je 467 (329 v západním objektu a 138 ve východním objektu). Rozdíl mezi počtem parkovacích stání požadovaným vyhláškou o OTP (349 parkovacích stání pro potřeby záměru) a celkovým počtem navržených parkovacích představuje náhradu za parkovací kapacity, které budou zastavěny objekty záměru a vjezdy do těchto objektů.

Celkový počet parkovacích stání pro potřeby varianty 2 záměru, je 274. Celkový počet parkovacích stání navrhovaných v obou objektech záměru je 421 (295 v západním objektu a 126 ve východním objektu). Rozdíl mezi počtem parkovacích stání požadovaným vyhláškou o OTP (274 parkovacích stání pro potřeby záměru) a celkovým počtem navržených parkovacích představuje náhradu za parkovací kapacity, které budou zastavěny objekty záměru a vjezdy do těchto objektů.
Za 24 hodin běžného pracovního dne přijede ve variantě 1 do objektů záměru 366 osobních automobilů obsluhujících záměr a ve variantě 2 to bude celkem 277 osobních automobilů (1 automobil = 1 příjezd a 1 odjezd). Pomalá vozidla (to znamená nákladní automobily nad 3,5 t) obsluhující záměr jsou ve variantě 1 uvažována v počtu 5 vozidel za 24 hodin běžného pracovního dne a ve variantě 2 v počtu 4 vozidla za 24 hodin běžného pracovního dne.

Údaje o stavu životního prostředí v dotčeném území jsou pro obě varianty záměru stejné. Stejně tak se prakticky (vyhodnotitelně) neliší obě varianty záměru z hlediska: vlivů na obyvatelstvo; vlivů na klima, včetně sociálně ekonomických vlivů, vlivů na povrchové a podzemní vody; vlivů na horninové prostředí a přírodní zdroje; vlivů na faunu, flóru a ekosystémy; vlivů na krajinu a vlivů na hmotný majetek a kulturní památky.

Vlivem zprovoznění záměru dojde v jeho okolí k mírnému navýšení imisní zátěže. V případě průměrných ročních koncentrací bude ve variantě 2 záměru jeho příspěvek k imisním koncentracím v ovzduší většinou mírně nižší než ve variantě 1. Pouze v případě průměrných ročních koncentrací benzo(a)pyrenu bude ve variantě 2 příspěvek záměru nepatrně vyšší (o 0,001 ng.m$^{-3}$ = 0,1% imisního limitu).

Celkově je možné konstatovat, že navrhovaný záměr nebude mít významný vliv na plnění imisních limitů v hodnocené lokalitě. Vlivy záměru na kvalitu ovzduší je možno hodnotit v obou variantách jako nevýznamné. Realizace záměru nebude mít určující vliv na imisní zatížení předmětné lokality.

V souvislosti s realizací záměru a vyvolaným provozem dopravy na silnicích a místních komunikacích dojde v obou variantách záměru k mírnému nárůstu hluku. Vzhledem k nižší intenzitě dopravy vyvolané záměrem ve variantě 2 záměru bude nárůst v této variantě celkově nepatrně nižší. Z hlediska hodnocení vlivů záměru na životní prostředí a zdraví obyvatel jsou však zjištěné rozdíly nevýznamné.

Komplexní charakteristika vlivů záměru na životní prostředí z hlediska jejich velikosti a významnosti a možností přeshraničních vlivů je pro obě varianty stejná. Charakteristikaenvironmentálních rizik při možných haváriích a nestandardních stavech se pro obě varianty záměru neliší. Totéž platí pro charakteristiku použitých metod prognózování a výchozích předpokladů při hodnocení vlivů a pro charakteristiku nedostatků ve znalostech a neurčitostí, které se vyskytly při zpracování dokumentace.

Charakteristika opatření k prevenci, vyloučení, snížení, popřípadě kompenzaci nepříznivých vlivů na životní prostředí se pro uvažované varianty záměru mírně liší. Ve variantě 1 záměru je navíc, oproti variantě 2, navržena oddělující konstrukce (protihluková clona) umístěná ve výse stropní konstrukce 4, nadzemního podlaží. Dále je ve variantě 1 záměru nutno chladič na střeše západního objektu umístit minimálně 3 m od obrysové hrany objektu.
ČÁST F - ZÁVĚR

Při zpracování dokumentace byly zhodnoceny všechny relevantní charakteristiky a ukazatele vlivů obou variant záměru „Polyfunkční domy – Centrum Lužiny“ na životní prostředí a zdraví obyvatel, stanovené přílohou čísl 4 zákona č. 100/2001 Sb., o posuzování vlivů na životní prostředí a o změně některých zákonů (zákon o posuzování vlivů na životní prostředí), ve znění pozdějších předpisů.

Základním materiálem pro hodnocení výstavby a provozu záměru byly projektové podklady a informace předané zpracovatelům dokumentace objednatelem, investorem a projektantem stavby, specializované studie, posudky, závěr zjišťovacího řízení, podklady poskytnuté orgány veřejné správy, vyjádření doručená k oznámení záměru předaná příslušným úřadem, literární a mapové podklady a výsledky průzkumů a terénních šetření.

Na základě komplexního posouzení obou variant záměru provedeného v této dokumentaci, včetně zhodnocení příspěvků výstavby a provozu záměru ke stávající hlukové zátěži a imisní zátěži v ovzduší v zájmovém území, lze konstatovat, že realizace záměru nebude ve srovnání se stávajícím stavem znamenat významné negativní ovlivnění jednotlivých složek životního prostředí ani nepřijatelný nárůst vlivů na zdraví obyvatel.

Po zhodnocení všech parametrů stavby a jejích možných pozitivních i negativních vlivů dospěl zpracovatel dokumentace k závěru, že stavba jak varianty 1 záměru, tak varianty 2 záměru je hlediska vlivů na životní prostředí a veřejné zdraví přijatelná a je možno ji realizovat.
ČÁST G - VŠEOBECNĚ SROZUMITELNÉ SHRNUŤÍ NETECHNICKÉHO CHARAKTERU

S ohledem na závěr zjišťovacího řízení a vyjádření doručená k oznámení záměru, týkající se velikosti a architektury stavby, je záměr „Polyfunkční domy – Centrum Lužiny“ předkládán ve dvou variantách. Pokud není uvedeno jinak, platí informace prezentované v této kapitole pro obě varianty záměru.

Předmětem záměru je výstavba polyfunkčních domů s převažující funkcí bydlení doplněnou ve variantě 1 záměru o kanceláře. Plánovaná stavba záměru se nachází v centru sídliště Lužiny v těsné blízkosti stanice metra Lužiny. Výstavba polyfunkčních domů je navržena na zpevněných plochách existujícího Obchodního centra Lužiny. Umístění zájmového území pro realizaci záměru „Polyfunkční domy – Centrum Lužiny“ je zřejmé z následujícího obrázku a z mapových podkladů uvedených v příloze číslo 2 dokumentace.

Obrázek G1 Umístění záměru – situace širších vztahů

Zdroj: http://www.mapy.cz; EKOLA group, spol. s r.o.
Varianta 1

Varianta 2

Vyšší patra objektu (od 6. NP do 15. NP) jsou určena výhradně pro bydlení. V šestém nadzemním podlaží jsou vedle bytů projektovaly sklípky pro rezidenty. Východní objekt (objekt Beta) je oproti variantě 1 záměru snížen o 1 nadzemní podlaží. Ostatní charakteristiky objektu zůstávají ve variantě 2 záměru v zásadě zachovány.

Západní objekt bude tvořen čtyřpatrovou podnoží, na které bude v její severní části vyrůstat obytná věž, která bude mít 26 nadzemních podlaží a bude tvořit výškovou dominantu území. Ve variantě 2 záměru nejsou v západním objektu uvažovány administrativní plochy a objekt je na rozdíl od varianty 1 záměru koncipován jako čistě bytový.

Hlavní parametry jednotlivých objektů (přibližné parametry na úrovni projektu pro územní řízení) jsou pro variantu 1 záměru i pro variantu 2 záměru shrnuty v následující tabulce.
Tabulka B1 Hlavní parametry objektů záměru (přibližné parametry)

<table>
<thead>
<tr>
<th>Parametr</th>
<th>Západní objekt</th>
<th>Východní objekt</th>
<th>Celkem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Var. 1</td>
<td>Var.2</td>
<td>Var. 1</td>
</tr>
<tr>
<td>Zastavěná plocha novostaveb</td>
<td>2 023 m²</td>
<td>2 023 m²</td>
<td>880 m²</td>
</tr>
<tr>
<td>Celkové podlažní plochy bytů</td>
<td>11 720 m²</td>
<td>13 232 m²</td>
<td>8 180 m²</td>
</tr>
<tr>
<td>Počet bytů (z toho 90 % do 100m²)</td>
<td>169</td>
<td>168</td>
<td>134</td>
</tr>
<tr>
<td>Plocha administrativy</td>
<td>1 568 m²</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Počet parkovacích (PS) stání dle OTP</td>
<td>223</td>
<td>164</td>
<td>126</td>
</tr>
<tr>
<td>Počet PS vč. náhrady za stávající PS rušená stavbou záměru</td>
<td>329</td>
<td>295</td>
<td>138</td>
</tr>
<tr>
<td>Počet nadzemních podlaží</td>
<td>15</td>
<td>26</td>
<td>16</td>
</tr>
</tbody>
</table>

Poznámka: Var. 1 = varianta 1, Var. 2 = varianta 2

Technické, technologické a architektonické řešení záměru vychází z investičního záměru investora a respektuje jak funkční využití zájmového území dané územním plánem, tak podmínky v tomto území (zpevněné plochy stávajícího obchodního centra Lužiny).

Objekty záměru budou vzhledem k základovým poměrům území založeny na betonových pilotách. Nosnou konstrukcí bude prefabrikovaný železobetonový skelet, vodorovné konstrukce budou ze ztraceného bednění s dobetonávkou desek. Obvodový plášť a vnitřní stěny a příčky budou vybaveny kontaktním zateplovacím systémem.

Výplně otvorů – okna a balkónové dveře budou definovány v dalších fázích projektové přípravy záměru. Vstupní dveře do bytů budou bezpečností s předepsanou požární odolností, vstupní dveře do domů budou kovové, prosklené. Úpravy povrchů budou ve standardním provedení – keramické obklady, dlažby, omítky, malby, povrchy podlah budou plovoucí. Střechy obou objektů budou ploché s živěnou krytinou.

Předpokládaný termín zahájení stavby záměru „Polyfunkční domy – Centrum Lužiny” je rok 2016. Předpokládaný termín ukončení výstavby je rok 2018. Údaje o předpokládaném termínu zahájení realizace záměru a jeho dokončení je však třeba chápat jako předběžné, protože se mohou změnit v závislosti na postupu projekčních prací a zejména v závislosti na průběhu povolovacích řízení.

Stavba je navržena ve dvou etapách (každý ze dvou samostatných objektů záměru bude samostatnou etapou). Jako první bude zahájena výstavba východního objektu záměru (objekt Beta). Zahájení stavby západního objektu (objekt Alfa) se předpokládá až po dokončení zakládání východního objektu.
Zájmové území pro realizaci záměru je velmi dobře dostupné MHD. Dostupnost navrhované lokality prostředky městské hromadné dopravy je zajištěna prostřednictvím krátké vazby stanic metra Luka trasy B. Pěši doprava po ose sever - jih, tedy zejména od stanice metra Lužiny směrem na jih, prochází středem stávajícího obchodního centra Lužiny.

Hlavní příjezdové a odjezdové trasy automobilové dopravy obsluhující objekty záměru budou v obou variantách záměru vedeny po ulici Archeologická, která ústí na obou stranách (z jedné strany v pokračování po ulici Mukařovského) do kapacitní městské komunikace Jeremiášovy. Jeremiášova ulice je řazena v kategorii sběrných komunikací městského významu a zajišťuje další komunikační vazby dotčeného území na ulice Radlickou, Bucharovu a Rozvadovskou spojku. Tyto komunikace pak zprostředkují vazby jak ve směru k trase Městského tak Pražského okruhu.

Hlavními identifikovanými vlivy obou variant záměru na obyvatele budou vlivy automobilové dopravy související s jeho provozem na kvalitu ovzduší a na hlukovou situaci v zájmovém území a vlivy stacionárních zdrojů hluku na střechách a fasádách objektů záměru na hlukovou situaci.

Vlivy záměru na imisní situaci v ovzduší a na hlukovou zátěž v zájmovém území a v jeho okolí (včetně jeho příspěvků) jsou proto vyhodnoceny v příslušných kapitolách dokumentace na základě specializovaných studií zpracovaných pro obě varianty záměru. Tyto studie jsou nedílnou součástí dokumentace (viz rozptylové a hlukové studie, které jsou přílohami číslo 4 a 5 dokumentace).

Z hlediska celkové úrovně imisní zátěže v ovzduší lze charakterizovat hodnocenou lokalitu jako mírně až středně zatíženou. Negativní vlivy záměru na kvalitu ovzduší se mohou projevit v důsledku mírného nárůstu emisí do ovzduší způsobeného automobilovou dopravou související s jeho provozem. Vzhledem k velikosti a charakteru záměru nebudou tyto vlivy významné a budou se týkat především obyvatel nejbližších obytných domů v ulicích, kterými bude vedena doprava související s jeho provozem.

U žádné sledované znečišťující látky nebylo vlivem uvedení záměru do provozu vypočteno překročení imisního limitu. Vlivy záměru na kvalitu ovzduší možno hodnotit v obou variantách jako nevýznamné. Ani u jedné varianty nepřekročil příspěvek z provozu záměru u průměrných ročních koncentrací 1 % imisního limitu u žádné ze sledovaných látek. Posuzovaný zdroj tak nebude mít z hlediska zákona č. 201/2012 Sb. na území nadměrný vliv a nebudou nutná kompenzační opatření.

Z hlediska hodnocení zdravotních rizik znečištění ovzduší souvisejícího se záměrem jsou závěry pro obě varianty záměru stejné. Vypočtený předpokládaný imisní příspěvek záměru, daný navýšením objemu dopravy a parkování vozidel souvisejícím s provozem záměru, bude z hlediska zdravotního rizika znečištění ovzduší pro obyvatele dotčeného území u všech hodnocených škodlivin zanedbatelný a kvantitativně prakticky nehodnotitelný.
Dominantním zdrojem hluku v zájmovém území je automobilová doprava. Na základě provedeného matematického modelování počáteční akustické (hlukové) situace v zájmovém území a jednorázového (kalibráčního) měření je možno hodnotit území podél odjezdových a příjezdových tras k záměru jako území s částečně zvýšenou hlukovou zátěží.

I po realizaci záměru bude téměř ve všech výpočtovéch bodech plněn hygienický limit z provozu dopravy na silnicích a místních komunikacích III. třídy. Ve výpočtovéch bodech, ve kterých dochází k překročení hygienického limitu na komunikacích III. třídy (místní komunikace) jak ve stavu bez záměru tak ve stavu se záměrem, se změna vlivem záměru pohybuje v denní i noční době nejvýše do 0,4 dB (ve variantě 2 nejvýše 0,3 dB).

Přestože dle výše uvedeného metodického návodu nedochází v souvislosti s realizací záměru ani v jedné jeho variantě k hodnotitelné změně akustické situace, byla v místech, kde dochází k překročení hygienického limitu z provozu dopravy již ve stavu bez provozu záměru, navrženo protihlukové opatření - realizace tichého povrchu. Realizací tichého povrchu bude zajištěno, že ve výpočtovéch bodech umístěných v jeho okolí nedojde k nárůstu hodnot $L_{A_{eq,T}}$ z provozu obslužné dopravy záměru při porovnání se stavem bez záměru a oproti stavu bez realizace záměru dokonce dojde v těchto bodech ke snížení hluku z provozu automobilové dopravy.

Z výpočtu vlivu stacionárních zdrojů hluku a dopravy na účelových komunikacích na chráněný venkovní prostor staveb vyplývá, že ve všech výpočtovéch bodech jsou vypočtené ekvivalentní hladiny akustického tlaku A pro denní i noční dobu nižší než je hygienický limit hluku ze stacionárních zdrojů 50/40 dB (den/noc). Ve variantě 1 záměru je splnění hygienického limitu podmíněno realizací protihlukového opatření. Navrženým protihlukovým opatřením je protihluková konstrukce nad vjezdem do západního objektu, vyložená minimálně 3,6 m v délce 19 m.

V současnosti je celé zájmové území zcela antropogenně pozměněno. Předmětné území je zastavěno zpevněnými plochami stávajícího obchodního centra Lužiny. Okolní pozemky tvoří především plochy se zpevněným povrchem (asfalt, beton) a částečně i plochy s nezpevněným povrchem a městskou zelení.

Realizace záměru nebude znamenat oproti stávajícímu stavu prakticky žádnou změnu odtokových poměrů a nakládání se srážkovými vodami. V důsledku realizace záměru se nepředpokládá negativní ovlivnění kvality podzemních nebo povrchových vod. Realizace záměru nebude mít vliv na úroveň znečištění půdy a podzemních vod.

V důsledku realizace záměru se nepředpokládají žádné vlivy záření. Při odpovědném a kvalifikovaném nakládání s odpady z rekonstruovaného multifunkčního objektu nedojde k žádným významným negativním vlivům na životní prostředí ani k ohrožení zdraví obyvatel.
Realizace záměru nedojde k záboru pozemků chráněných jako zemědělský půdní fond (ZPF) ani k záboru pozemků určených k plnění funkce lesa (PUPFL). Pozemky jsou vedeny v katastru nemovitostí jako ostatní plochy. Podle stávajícího způsobu využití jsou pozemky dotčené stavbou vedeny jako jiná plocha.

Prakticky veškerá výstavba v rámci záměru bude realizována v plochách, které jsou již v současnosti zastavěny. Výjimkou budou vjezdy do východního objektu záměru (objekt Beta). Zde dojde k záboru malé plochy nekvalitní a neperspektivní zeleně v prostoru (na okrají) stávajícího parkoviště.

V souvislosti s realizací záměru bude nutno pokácet až 11 stromů situovaných při západní a východní hranici území záměru, kde v současnosti nemají dostatečný kořenový prostor pro zdárný budoucí rozvoj. Stav hodnocených dřevin lze shrnout jako průměrný, u některých zhoršený. Investor zajistí po dohodě s příslušným úřadem odpovídající náhradní výsadbu zeleně.

Záměr je umístěn do antropogenně ovlivněného území (zastavěných ploch), ve kterém nebyl zjištěn výskyt chráněných živočišných druhů. V lokalitě navržené stavby byl zaznamenaný výskyt pouze zcela běžných druhů živočichů, kteří se adaptovali na prostředí města. V důsledku realizace záměru se proto nepředpokládají významné vlivy na rostlinstvo.

Vzhledem k současnému stavu území nedojde výstavbou záměru k žádnému významnému zásahu do ekosystémů, protože v plochách určených k výstavbě záměru nebyl výskyt složitějších ekosystémů identifikován. Vlivy na ekosystémy v důsledku výstavby a provozu záměru budou z uvedených důvodů zanedbatelné.

Zájmové území nelze považovat za přirozené ani přírodě blízké. Z hlediska širších územních vazeb je lokalita situována v plně urbanizovaném prostoru. Realizací záměru nedojde k žádnému zásahu do prvků územního systému ekologické stability (ÚSES), protože v plochách určených k výstavbě ani v jejich blízkosti se žádné prvky ÚSES nenalézají.

V dosahu záměru a jeho možných přímých vlivů se nenachází žádné chráněné území vymezené v rámci soustavy NATURA 2000 (soustava chráněných území evropského významu vyhlášených podle požadavků směrnice 79/409/EHS o ptácích a směrnice 92/43/EHS o stanovištích). Záměr nebude mít na evropsky významné lokality nebo ptačí oblasti soustavy NATURA 2000 negativní vliv.

Vlivy záměru na krajinu (krajinný ráz) byly pro obě varianty záměru posouzeny ve specializovaných studiích. Na základě těchto studií lze konstatovat, že navržený záměr nepředstavuje ani v jedné variantě zásah do znaků a hodnot jednotlivých charakteristik krajinného rázu dotčené krajině a do zákonných kritérií dle §12 zákona 114/1992 Sb., o ochraně přírody a krajiný.
Navrhovaný záměr je v obou variantách navržen s ohledem na kritéria ochrany krajinného rázu dle §12 zákona 114/1992 Sb., o ochraně přírody a krajiny, a je proto hodnocen jako únosný zásah do krajinného rázu, chráněného dle zákona.

Lokalita je situována v městském prostředí významně ovlivněném člověka, Vzhledem k charakteru záměru nebude výstavba záměru znamenat významné terénní úpravy. S ohledem na stávající stav okolní městské krajiny a charakter stavby se nejedná o záměr, který by mohl mít velkoplošný negativní vliv na krajinu a její sídelní funkci. Z hlediska velkoplošných vlivů v krajině představuje realizace záměru přijatelně využití území.

Z hlediska hluku z dopravy je možno konstatovat, že při splnění navržených protihlukových opatření nedojde v souvislosti s realizací záměru ke zvýšení úrovně zdravotního rizika hlukové zátěže obyvatel dotčeného území.

Příspěvek záměru ke znečištění ovzduší, daný navýšením objemu dopravy a parkování vozidel souvisejícím s provozem záměru, bude z hlediska zdravotního rizika znečištění ovzduší pro obyvatele dotčeného území u všech hodnocených škodlivin zanedbatelný a kvantitativně prakticky nehodnotitelný.

Na základě komplexního posouzení obou variant záměru provedeného v této dokumentaci, včetně zhodnocení příspěvků výstavby a provozu záměru ke stávající hlukové zátěži a imisní zátěži v ovzduší v zájmovém území, lze konstatovat, že realizace záměru nebude v srovnání se stávajícím stavem stanovené významné negativní vlivové jednotlivých složek životního prostředí ani nepřijatelný nárůst vlivů na zdraví obyvatel.

Po zhodnocení všech parametrů stavby a jejích možných pozitivních i negativních vlivů dospěl zpracovatel dokumentace k závěru, že stavba jak varianty 1 záměru, tak varianty 2 záměru je hlediska vlivů na životní prostředí a veřejné zdraví přijatelná a je možno ji realizovat.

Soulad uvedeného záměru s povinnostmi vyplývajícími ze zákonů ustanovení byl konfrontován se současně platnou legislativou. Existují-li další závažné skutečnosti, které by na posuzování záměru mohly mít zásadní vliv, nebyly zpracovateli dokumentace v době jejího zpracování známy.
ČÁST H - PŘÍLOHY

Část 1
Příloha č. 1 Vyjádření příslušného stavebního úřadu k záměru z hlediska územně plánovací dokumentace
Závazné stanovisko Magistrátu hlavního města Prahy, odboru územního plánu, k záměru studie proveditelnosti „Polyfunkční domy – Centrum Lužiny“
Stanovisko orgánu ochrany přírody přírody z hlediska možných vlivů na soustavu NATURA 2000
Příloha č. 2 Situace navrhované zástavby
Situace širších vztahů
Závěr řešeného území do snímku územního plánu
Schéma vjezdů a parkovišť
Celková koordinační situace
Funkční využití plochy SV
Příloha č. 3 Vizualizace a pohledy
Příloha č. 4 Rozptylové studie

Část 2
Příloha č. 5 Hlukové studie
Protokol o měření hluku
Příloha č. 6 Hodnocení vlivů na veřejné zdraví
Příloha č. 7 Studie oslunění a denního osvětlení
Příloha č. 8 Dopravně inženýrské podklady
Dopravní průzkum

Část 3
Příloha č. 9 Studie vlivu na krajinný ráz
Příloha č. 10 Fotodokumentace stávajícího stavu
Příloha č. 11 Dendrologický průzkum
Příloha č. 12 Studie provětrávání území
Příloha č. 13 Doklady odborné způsobilosti
Příloha č. 14 Stanovisko k záměru dotvořit komplex centra Lužin dostavbou polyfunkčních domů podél fášad OC Lužiny
Příloha č. 15 Historie vývoje projektu Dostavba obchodního centra Lužiny
Příloha č. 16 Obchodní centrum LUŽINY – Rozbor současného stavu centra a úvaha o možnostech jeho přestavby a revitalizace i z hlediska širších vztahů
Příloha č. 17 Vypořádání připomínek k oznámení záměru

Prosinec 2014
Číslo úkolu: 2014-S-06
3. SEZNAM ZPRACOVATELŮ DOKUMENTACE

Tato dokumentace záměru stavby byla zpracována v souladu s § 8 zákona č. 100/2001 Sb., o posuzování vlivů na životní prostředí a o změně některých souvisejících zákonů, ve znění pozdějších předpisů, kolektivem autorů pod vedením Ing. Bohumila Sulka, CSc., který je autorizovanou osobou oprávněnou zpracovávat dokumentace a posudky podle téhož zákona.

Zhotovitel: Bohumil Sulek
Na Pláni 9
150 00 Praha 5
telefon: 602 353 194
e-mail: bob.sulek@seznam.cz

Odpovědný řešitel: Ing. Bohumil Sulek, CSc.
Na Pláni 2863/9
150 00 Praha 5

Řešitelský tým (v abecedním pořadí):

Rozdělovník: 1 – 10 Magistrát hl. m. Prahy, Odbor životního prostředí
11 – 12 YIT Stavo s.r.o.
13 Ing. Bohumil Sulek, CSc.

Datum zpracování: 23. prosince 2014

Podpis zpracovatele dokumentace: ..
Ing. Bohumil Sulek, CSc.
4. SEZNAM POUŽITÝCH PODKLADŮ

Základní podklady

Polyfunkční domy – Centrum Lužiny – dokumenatce pro územní rozhodnutí – varianta 1
Polyfunkční domy – Centrum Lužiny – dokumenatce pro územní rozhodnutí – varianta 2
Územní plán hl. m. Prahy.
Územní systém ekologické stability hl. m. Prahy (mapová část a textová část).
Obecně závazné vyhlášky hl. m. Prahy.
Ortolotomapa zájmového území a další mapové podklady.
Průzkumy zájmového území realizované zpracovatelem oznámení.
Webové stránky hl. m. Prahy, MŽP, ČHMÚ, OHS atd.
Právní předpisy týkající se životního prostředí a ochrany zdraví obyvatel, normy a metodické pokyny MŽP.
Friedl, K. a kol.: Chráněná území v České republice, MŽP, Praha 1991
Hejný, S. et Slavík, B.: Květena ČSR 1: 103-121. MŽP, Praha 1988
Piša V. a kol.: Aktualizace modelového hodnocení kvality ovzduší na území hl. m. Prahy (Aktualizace 2012), MHMP, Praha, 2014

Další podklady

M. Olmer, J. Kessl a kol.: Hydrogeologické rajóny, VUV, ČHMÚ vydané SZN Praha 1990.

